

Deep Hyperspherical Learning

Weiyang Liu¹, Yan-Ming Zhang², Xingguo Li^{1,3}, Zhiding Yu⁴, Bo Dai¹, Tuo Zhao¹, Le Song¹

1. Georgia Tech 2. CASIA 3. Univ. of Minnesota 4. CMU

Introduction

Motivation I

2D Fourier Transform for images

The magnitude of A + The phase of B =

The magnitude of B + The phase of A =

Phase contains the crucial discriminative information!

Motivation II

- Angles (Phase) usually give bounded output, avoiding covariate shift problem and stablize the network training.
- For example, we usually use the cosine function of angles, which produces output from -1 to 1. The internal covariate shift can be largely prevented.

Motivation III

 By only using the angular information in the network learning, we could largely reduce the learning space of parameters, which could accelerate the training process and speed up the convergence.

SphereNet: A Neural Network Learned on Hyperspheres

Hyperspherical Convolutional (SphereConv) Operator:

$$\mathcal{F}_s(\boldsymbol{w}, \boldsymbol{x}) = g(\theta_{(\boldsymbol{w}, \boldsymbol{x})}) + b_{\mathcal{F}_s}$$

where $\theta_{(\boldsymbol{w},\boldsymbol{x})}$ is the angle between the kernel parameter w and the local patch x. A simple example is cosine SphereConv:

$$g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = \cos(\theta_{(\boldsymbol{w},\boldsymbol{x})})$$

We use this SphereConv operator to replace the original inner product based convolutional operator in the CNNs, and propose the *SphereNet*. (SphereNet comes from that angle can be viewed as the geodesic distance on a unit hypersphere)

Hyperspherical Convolutional Operator

Three SphereConv operators:

- Besides the predefined SphereConv operators, we further consider the *learnable SphereConv*.
- SphereConv can also be used to the fully connected layers, recurrent layers, etc.
- We also design angular loss functions for *SphereConv*, i.e., generalized angular softmax (GA-Softmax) loss

Theoretical Insights

• Suppose the observation is $\vec{F} = U^*V^{*\top}$ (ignore the bias), where $U^* \in \mathbb{R}^{n \times k}$ is the weight, $V^* \in \mathbb{R}^{m \times k}$ is the input that embeds weights from previous layers.

Scaling Issue of Neural Nets:

Consider the objective:

$$\min_{oldsymbol{U} \in \mathbb{R}^{n imes k}, oldsymbol{V} \in \mathbb{R}^{m imes k}} \; \mathcal{G}(oldsymbol{U}, oldsymbol{V}) = rac{1}{2} \|oldsymbol{F} - oldsymbol{U} oldsymbol{V}^{ op}\|_{\mathrm{F}}^2$$

Lemma1: Consider a pair of global optimal points U, V satisfying $F = UV^{\top}$ and $\operatorname{Tr}(V^{\top}V \otimes I_n) \leq \operatorname{Tr}(U^{\top}U \otimes I_m)$. For any real c > 1, let $\widetilde{U} = cU$ and $\widetilde{V} = V/c$, then we have $\kappa(\nabla^2 \mathcal{G}(\widetilde{U}, \widetilde{V})) = \Omega(c^2 \kappa(\nabla^2 \mathcal{G}(U, V)))$, where $\kappa = \frac{\lambda_{\max}}{\lambda_{\min}}$ is the restricted condition number with λ_{\max} being the largest and λ_{\min} being the smallest nonzero eigenvalues.

Insensitiveness to Scaling for SphereConv:

Consider our proposed cosine SphereConv operator, an equivalent problem is:

$$\min_{\boldsymbol{U} \in \mathbb{R}^{n \times k}, \boldsymbol{V} \in \mathbb{R}^{m \times k}} \mathcal{G}_{S}(\boldsymbol{U}, \boldsymbol{V}) = \frac{1}{2} \|\boldsymbol{F} - \boldsymbol{D}_{\boldsymbol{U}} \boldsymbol{U} \boldsymbol{V}^{\top} \boldsymbol{D}_{\boldsymbol{V}} \|_{\mathrm{F}}^{2}$$
where $\boldsymbol{D}_{\boldsymbol{U}} = \mathrm{diag} \left(\frac{1}{\|\boldsymbol{U}_{1,:}\|_{2}}, \dots, \frac{1}{\|\boldsymbol{U}_{n,:}\|_{2}} \right) \in \mathbb{R}^{n \times n}$ and $\boldsymbol{D}_{\boldsymbol{V}} = \mathrm{diag} \left(\frac{1}{\|\boldsymbol{V}_{1,:}\|_{2}}, \dots, \frac{1}{\|\boldsymbol{V}_{m,:}\|_{2}} \right) \in \mathbb{R}^{m \times m}$ are diagonal matrices.

Lemma2: For any real c>1, let $\widetilde{\boldsymbol{U}}=c\boldsymbol{U}$ and $\widetilde{\boldsymbol{V}}=\boldsymbol{V}/c$, then we have $\lambda_i(\nabla^2\mathcal{G}_S(\widetilde{\boldsymbol{U}},\widetilde{\boldsymbol{V}}))=\lambda_i(\nabla^2\mathcal{G}_S(\boldsymbol{U},\boldsymbol{V}))$ for all $i\in[(n+m)k]=\{1,2,\ldots,(n+m)k\}$ and $\kappa(\nabla^2\mathcal{G}(\widetilde{\boldsymbol{U}},\widetilde{\boldsymbol{V}}))=\kappa(\nabla^2\mathcal{G}(\widetilde{\boldsymbol{U}},\boldsymbol{V}))$, where κ is defined as in Lemma1.

- Regular Neural Nets: scales as $\Omega(c^2)$
- SphereConv: <u>insensitive</u> to scaling

Learnable SphereConv Operator

• With sigmoid SphereConv, we naturally come up with a learnable SphereConv. Specifically, we propose to learn the parameter k in the sigmoid SphereConv.

$$g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = \frac{1 + \exp(-\frac{\pi}{2k})}{1 - \exp(-\frac{\pi}{2k})} \cdot \frac{1 - \exp(\frac{\theta_{(\boldsymbol{w},\boldsymbol{x})}}{k} - \frac{\pi}{2k})}{1 + \exp(\frac{\theta_{(\boldsymbol{w},\boldsymbol{x})}}{k} - \frac{\pi}{2k})}$$

$$k \text{ is learned by back-prop!}$$

- K is updated using $k^{t+1} = k^t + \eta \frac{\partial L}{\partial k}$ where t denotes the iteration and $\frac{\partial L}{\partial k}$ is computed by the chain rule.
- Preliminary results: we learn a parameter k independently for each kernel and draw a frequency histogram for the value of k. Note that, we initialize all k with the same constant 0.5. The final accuracy can be further boosted with learnable SphereConv.

SphereNorm: a New Normalization Method

- Similar to batch normalization (BatchNorm), we note that the hyperspherical learning can also be viewed as a way of normalization, because SphereConv constrain the output value in [-1, 1] ([0, 1] after ReLU).
- Different from BatchNorm, SphereNorm normalizes the network based on spatial information and the weights, so it has nothing to do with the mini-batch statistic.
- SphereNorm and BatchNorm are complimentary to each other and could be used simultaneously.

Experiments on CIFAR-10 and CIFAR100

• On both CIFAR-10 and CIFAR-100, we observe the faster convergence on multiple network architectures like plain CNNs and ResNets.

 Our SphereResNet uses only 34 layers to perform comparably to the 1001-layer ResNet.

Method	CIFAR-10+	CIFAR-100
ELU [2]	94.16	72.34
FitResNet (LSUV) [14]	93.45	65.72
ResNet-1001 [7]	95.38	77.29
Baseline ResNet-32 (softmax)	93.26	72.85
SphereResNet-32 (S-SW)	94.47	76.02
SphereResNet-32 (L-LW)	94.33	75.62
SphereResNet-32 (C-CW)	94.64	74.92
SphereResNet-32 (S-G)	95.01	76.39

Experiments on Imagenet-2012

- Our SphereResNet also shows much faster convergence on large-scale dataset like Imagenet-2012.
- The error is the single central crop error.

