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Introduction Hyperspherical Convolutional Operator Learnable SphereConv Operator Experiments on CIFAR-10 and CIFAR100
Motivation | + Three SphereConv operators: » With sigmoid SphereConv, we naturally come up with a * On both CIFAR-10 and CIFAR-100, we observe the
| 1 - learnable SphereConv. Specifically, we propose to learn faster convergence on multiple network architectures
« 2D Fourier Transform for images linear SphereConv — Cosine the parameter k in the sigmoid SphereConv. like plain CNNs and ResNets.
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sigmoid SphereConv » K'is updated using k"' =k*+n%z where t denotes the <o %05[
00y = L exp(—Z) 1—exp ("= _ x) iteration and g—i’ iIs computed by the chain rule. 2 04) £ | — OWNBadline
9 (w,z) — T . O =03 = SphereNet (cosine) w/ orth.'
1 — LI w.,x T . . —— ResNet baseline on 03+ — ereNet (linear) w/ orth.
. *XP(=2r) 1+ exp (F52 - )  Preliminary results: we learn a _g;iiiﬁ?ﬁ%i‘?s?;‘fﬁ%%ig;cmm” | ) SN Sgmid 15 o
5  Besides the predefined SphereConv operators, we parameter k independently for — T m T L tterReNaSEnidodon AFARI ] -
further consider the learnable SphereConv. each kermel and draw a Riconv! | | Iteration o’ Iteration «aof
frequency histogram for the &, com3 | (a) ResNet vs. SphereResNet (b) CNN vs. SphereNet (orth.)
» SphereConv can also be used to the fully connected | f kK Note that = N o ’ o '
. Ph tains th Al discriminative inf fion! value of k. Note that, we 3
ase contains the crucial discriminative information! layers, recurrent layers, etc. nitialize all k with the same o1l ) 0s —=
constant 0.5. The final accuracy 03 U s spreene N

Motivation II * WWe also design angular loss functions for SphereConv, , e o os
i.e., generalized angular softmax (GA-Softmax) loss can be further boosted with The value otk

* Angles (Phase) usually give bounded output, avoiding learnable SphereConv.
covariate shift problem and stablize the network training. . .
P ° Theoretical Insights

* For example, we usually use the cosine function of
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SphereNorm: a New Normalization Method
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angles, which produces output from -1 to 1. The internal - Suppose the observation is F = U*V*T (ignore the bias), o2 1} AN 0
. . - . . . . ] ] ] ] | —— SphereNet
covariate shift can be largely prevented. where U* ¢ R"** is the weight, v* ¢ R™** s the input « Similar to batch normalization (BatchNorm), we note T B o5 1 15 5 25 3 35 4
: . . : . [teration x10° [teration x10%
Motivati - that embeds weights from previous layers. that the hypersp_her!cal learning can also be viewed as (c) Different width of SphereNet (d) Deep CNN vs. SphereNet
otivation _ a way of normalization, because SphereConv constrain on CIFAR-10 on CIFAR-10
. . - Scaling Issue of Neural Nets: the output value in [-1, 1] ([0, 1] after ReLU).
* By only using the angular information in the network Consider the obiective | » Our SphereResNet uses only 34 layers to perform
learning, we could largely reduce the learning space of onsiderine objective. 1 o » Different from BatchNorm, SphereNorm normalizes the comparably to the 1001-layer ResNet.
parameters, which could accelerate the training process seproii g YUV =3l F—UV iy network based on spatial information and the weights,
and speed up the convergence. . . . . so it has nothing to do with the mini-batch statistic. Method CIFAR-10+ | CIFAR-100
Lemma1: Consider a pair of global optimal points U, V ELU 2] 9416 7537
satisfying F=Uv'and Tt(V've I, < Tr(U'U ® I,). « SphereNorm and BatchNorm are complimentary to FitResNet (LSUV) [14] 93.45 65.72
Foranyreal ¢ > 1 let U = ¢«U and V = Vv/c, thenw each other and could be used simultaneously. ResNet-1001 [7] 95.38 71.29
SphereNet: A Neural Network Learned on have x(V2G(U,V)) = Q(k(V2G(U,V))), where x = == g e Bascline ResNet-32 (softmax) 93.26 72.85
Hyperspheres the restricted condition number with Anax being the >3 S e SphercResNe-32 Eii‘x; T 1602
. . largest and . being the smallest nonzero eigenvalues. o7 | o1} , | D s 2 (. ' |
Hyperspherical Convolutional (SphereConv) Operator: J J J 06 ' 2 AN \ SphereResNet-32 (C-CW) 94.64 74.92
- . : : : 0.6 Vl " SphereResNet-32 (S-G) 95.01 76.39
| (W, ®) = 9(Ow,a)) + b7, Insensitiveness to Scaling for SphereConv: <Ay | <o |
where 0(w,2) is the angle between the kernel parameter w Consi e S c Zoaf [ Ay | 204 e | Experiments on Im net-2012
and the local patch r. A simple example is cosine . on.s|der our propo_sed cosine SphereConv operator, an B Bacorn | Eos — Rescald Spherom | pe ents o dgene
Sphereconv eqUIvalent prObIem IS. 02 —— SphereNorm+BatchNorm | | 02 —SghereNom+BatchNorm 1
(0 ) = cos(0 ) - Gs(U.V) = L||F — DyUV " Dy | . 01 | * Our SphereResNet also shows much faster convergence
= s(\U, = 3 — Uu 1% - ‘ ' ‘ ‘ ' ' ' ' | ‘ ' ' :
TV (w,2) () Ucrn Xk V eRm Xk 2 ' R on large-scale dataset like Imagenet-2012.
We use this SphereConv operator to replace the original where Dy = diag(rgr,.... o) € R™" and (a) Mini-Batch Size = 4 (b) Mini-Batch Size = 8 T i o
- - - . . . rror i in ntral cr rror.
inner product based convolutional operator in the CNNs, Dy = diag(rglir,..., pir) € Rmxmare diagonal matrices. e error Is the single central crop erro
and propose the SphereNet. (SphereNet comes from that bl el > 2 0.9 E 07
angle can be viewed as the geodesic distance on a unit Lemma2: Foranyrealc>1,let U =cU andv = v/, o8 o8 . Senomreener18vi || o et 18.v1 |
hyperSphere) then we have )\, (VQQS(Ua V)) — /\i(v,zgS(Uy V)) for all gz; V g‘zz — SphereResNet-18-v2 —— SphereResNet-18-v2
gy O . R i € [(n+mkl = {L2....(n +mk} and K(V2G(U,V)) =
Ger] "> @(Bpen) | SPVCTECON Operator \ . . . . o0 | o0 —— BatchNorm 5 Sl
) O =i = - (V2G(U, V), where « is defined as in Lemmar. EN e g | SpheteNorm g oo go4
. . SE% < o % creiNorm s Rescaled SphereNorm — e
] = : e Amk =03 —__ Rescaled Sphereorm =03 —— SphereNorm w/ Orth. 50.5 £40.3
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L B Generalized Angular « SphereConv: insensitive to scaling o 1 2 3 4 5 6 o 1 2 3 4 5 6 03 - = 0.1 s
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(c) Mini-Batch Size = 16 (d) Mini-Batch Size = 32 Iteration x10° Iteration x10°
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