

Learning towards Minimum Hyperspherical Energy

Weiyang Liu¹*, Rongmei Lin²*, Zhen Liu¹*, Lixin Liu¹, Zhiding Yu³, Bo Dai⁴, Le Song¹

1. Georgia Tech 2. Emory University 3. NVIDIA 4. Google Brain * Equal Contribution

Code for SphereFace+

Code for MHE

Introduction

Motivation

 Filters learned in convolutional neural networks are highly redundant. (e.g. Conv1 filters from AlexNet)

- Recent studies show that reducing the neuron redundancy can effectively improve the network generalization.
- A natural way is to use orthogonality, but it may not be effective when the filter dimension is smaller than the number of filters.

Connection to physics

- To characterize diversity, we draw inspiration from a famous physics problem, called **Thomson problem**.
- Thomson problem is to find a state that distributes N electrons on a unit sphere as evenly as possible to minimize potential energy.

 The electrons repel each other with a force given by Coulomb's Law.

Intuition

- We draw inspiration from Thomson problem, and propose <u>hyperspherical energy</u> to characterize neuron diversity.
- The intuitive comparison is shown as follows:

Minimum Hyperspherical Energy (MHE)

- Hyperspherical Energy characterizes the diversity of neurons on a hypersphere.
- We define the hyperspherical energy functional for N neurons with (d+1)-dimension $W_N = \{w_1, \cdots, w_N \in \mathbb{R}^{d+1}\}$ as

$$E_{s,d}(\hat{w}_i|_{i=1}^N) = \sum_{i=1}^N \sum_{j=1,j\neq i}^N f_s(\|\hat{w}_i - \hat{w}_j\|) = \begin{cases} \sum_{i\neq j} \|\hat{w}_i - \hat{w}_j\|^{-s}, & s > 0\\ \sum_{i\neq j} \log(\|\hat{w}_i - \hat{w}_j\|^{-1}), & s = 0 \end{cases}$$

where

$$f_s(\cdot)$$
 = Riesz s-kernel, with
$$\begin{aligned} f_s(z) &= z^{-s}, s > 0 \\ f_0(z) &= \log(z^{-1}) \end{aligned}$$

 $\hat{m{w}}_i = rac{m{w}_i}{\|m{w}_i\|}$ = normalized weight of the *i*-th neuron

- In fact, $f_s(\cdot)$ can be a general decreasing function.
- Minimizing E_0 can be viewed as a relaxation of minimizing E_s for s>0.
- We add this energy to the total regularization loss in a network and minimize it via SGD and back-prop.

MHE beyond Euclidean Distance

- In addition to Euclidean distance, we consider the geodesic distance (i.e., angle) on a unit hypersphere as a distance measure for neurons.
- The formulation is given as follows:

MHE in Half Space

 The original MHE suffers from <u>collinear redundancy</u>, as shown in the following:

- Instead, we can construct virtual neurons in the opposite directions of the original neurons.
- We minimize the half-space hyperspherical energy of both original and virtual neurons together to encourage a diverse distribution of them.

Theoretical Properties

- The optimal distribution of N neurons (w.r.t. MHE)
 asymptotically converge to the <u>uniform distribution on</u>
 <u>the hypersphere</u> as N becomes larger.
- Minimizing MHE can <u>provably guarantee</u>
 <u>generalization</u> error in a one-hidden-layer net under some assumptions.

Decoupled View of MHE

 We can decouple the convolutional into magnitude and angle [Liu et al. Decoupled Networks, CVPR 2018]

$$f(\boldsymbol{w}, \boldsymbol{x}) = h(\|\boldsymbol{w}\|, \|\boldsymbol{x}\|) \cdot g(\theta)$$
$$= (\|\boldsymbol{w}\| \cdot \|\boldsymbol{x}\|) \cdot (\cos(\theta))$$

MHE is complementary to weight decay:

Ablation Study and Experiments

- Evaluation of different variants of MHE.
 - A-MHE = MHE with angular distance.
 - Different s represents using different energy formulation.

Method		CIFAR-10		CIFAR-100		
Wicthod	s=2	s=1	s=0	s=2	s=1	s=0
MHE	6.22	6.74	6.44	27.15	27.09	26.16
Half-space MHE	6.28	6.54	6.30	25.61	26.30	26.18
A-MHE	6.21	6.77	6.45	26.17	27.31	27.90
Half-space A-MHE	6.52	6.49	6.44	26.03	26.52	26.47
Baseline	7.75		28.13			

Table 1: Testing error (%) of different MHE on CIFAR-10/100.

• Different network depth:

Method	CNN-6	CNN-9	CNN-15
Baseline	32.08	28.13	N/C
MHE	28.16	26.75	26.9
Half-space MHE	27.56	25.96	25.84

Table 3: Testing error (%) of different depth on CIFAR-100. N/C: not converged.

Different network width:

Method	16/32/64	32/64/128	64/128/256	128/256/512	256/512/1024
Baseline	47.72	38.64	28.13	24.95	25.45
MHE	36.84	30.05	26.75	24.05	23.14
Half-space MHE	35.16	29.33	25.96	23.38	21.83

Table 2: Testing error (%) of different width on CIFAR-100.

ImageNet Classification

• MHE can effectively improve the accuracy of existing networks on image recognition.

M

Description

M

Orthogonal M

Orthogonal M

Half-sp

Method	ResNet-18	ResNet-34
baseline	33.95	30.04
Orthogonal [37]	33.65	29.74
Orthnormal	33.61	29.75
MHE	33.50	29.60
Half-space MHE	33.45	29.50

Class-imbalance Learning

 We first randomly throw away 98% training data for digit 0 in MNIST (only 100 samples are preserved for digit 0), and then train a 6-layer CNN on this imbalance MNIST. The 2D features are visualized as follows (Red arrows denote the classifier neurons):

 When MHE is applied to the output layers, MHE can greatly alleviate the class imbalance problem in the training set and help to learn reasonable features.

SphereFace+: MHE for Face Recognition

- SphereFace is a state-of-the-art face recognition method.
- SphereFace+ applies MHE regularization to the output layer in addition to the loss function of SphereFace.

man	LFW		MegaFace	
$m_{ m SF}$	SphereFace	SphereFace+	SphereFace	SphereFace+
1	96.35	97.15	39.12	45.90
2	98.87	99.05	60.48	68.51
3	98.97	99.13	63.71	66.89
4	99.26	99.32	70.68	71.30

Performance on 20-layer ResNet

man	LFW		MegaFace	
$m_{ m SF}$	SphereFace	SphereFace+	SphereFace	SphereFace+
1	96.93	97.47	41.07	45.55
2	99.03	99.22	62.01	67.07
3	99.25	99.35	69.69	70.89
4	99.42	99.47	72.72	73.03

Performance on 64-layer ResNet

SphereFace+
 consistently outperforms
 SphereFace, showing
 that MHE can improve
 generalization.

	Method	LFW	MegaFace
	Softmax Loss	97.88	54.86
2	Softmax+Contrastive [46]	98.78	65.22
S	Triplet Loss [41]	98.70	64.80
	L-Softmax Loss [30]	99.10	67.13
	Softmax+Center Loss [55]	99.05	65.49
	CosineFace [53, 51]	99.10	75.10
	SphereFace	99.42	72.72
	SphereFace+ (ours)	99.47	73.03

Comparison to the state-of-the-art

MHE for GANs

 MHE can also be applied to improve the image generation of GANs, and is complementary to spectral normalization. See our paper for details.