Iterative Learning with Open-set Noisy Labels

Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Le Song, Shu-Tao Xia

Tsinghua University, Georgia Tech, University of Melbourne

Types of Noisy Labels

- Closed-set noisy labels
 - A noisy sample possesses a true class that is contained within the set of known classes in the training data
- Open-set noisy labels:
 - A noisy sample possesses a true class that is not contained within the set
 of known classes in the training data

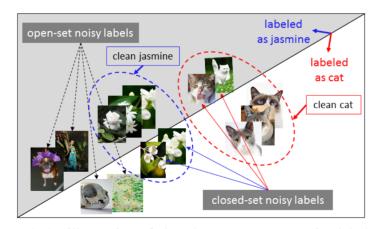


Figure 1. An illustration of closed-set vs open-set noisy labels.

Table 1. Types of labels for a "jasmine-cat" dataset.

	labeled as "jasmine"	labeled as "cat"
true "jasmine"	clean	closed-set
true "cat"	closed-set	clean
other class images	open-set	open-set

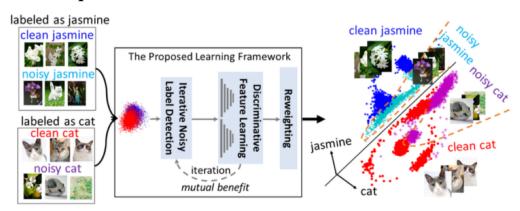
Different methods to handle different noise

- Closed-set noisy labels
 - loss correction
 - noise model based clean label inferring

- Open-set noisy labels
 - loss or label correction may be inaccurate since the true class may not exist in the dataset
 - Iterative learning framework to pull away noisy samples from clean samples in
 the deep representation space

Iterative learning framework

- Iterative noisy label detection:
 - iteratively detect noisy labels based on the features of the network
- Discriminative feature learning:
 - imposes a representation constraint via contrastive loss to pull away noisy samples from clean samples in the deep representation space
- Reweighting:
 - express a relative confidence of clean and noisy labels on the representation learning



Experiments

True noisy label rate:

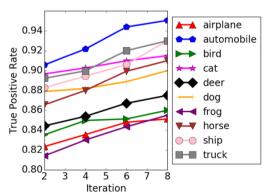


Figure 5. The true positive rate of the detected noisy labels over iteration on CIFAR-10+CIFAR-100 (40% open-set noise).

Visualization of the learned features:

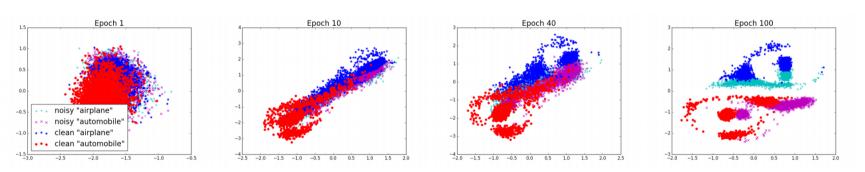


Figure 7. Visualization of the learned features. This visualization experiment uses a 2-class subset of CIFAR-10+CIFAR-100 (40% open-set noise) by setting the output feature dimension as 2.

Experiments

Ablation study:

Table 4. Accuracies (%) on CIFAR-10+CIFAR-100 (20% & 40% open-set noise) after removing (w/o) each module from our model.

Method	CIFAR-10+CIFAR-100		
Method	20% noise	40% noise	
Our model	81.96	79.28	
(a) w/o reweighting			
case a_1 : $\gamma = 1$	76.97	74.45	
case a_2 : $\gamma = 0$	79.27	76.03	
(b) w/o discriminative learning			
case b_1 : removing	76.22	68.40	
case b_2 : new class	78.34	73.11	
(c) w/o iterative detection			
case c_1 : only once	77.52	70.31	
case c_2 : no	76.17	63.50	

Experiments

• On ImageNet (200 classes):

Table 6. Accuracies (%) of different models on the 200-class ImageNet with 20% open-set noise. The best results are in **bold**.

Method	ResNet-50		Inception-v3	
	Top-1	Top-5	Top-1	Top-5
Cross-entropy	58.51	75.62	60.73	76.75
Backward	59.32	75.61	61.27	76.74
Forward	64.17	79.43	65.48	80.68
Bootstrapping	59.05	75.00	61.50	76.13
CNN-CRF	66.54	82.37	67.23	84.12
Ours	70.29	86.04	71.43	87.87

Take Home Message

- The open-set noisy label problem a more complex noisy label scenario that commonly occurs in real-world datasets
- An iterative learning framework to address the problem with three powerful modules: iterative noisy label detection, discriminative feature learning, and reweighting
- Modules are benefited from each other and jointly improved over iterations

Thank you!

