

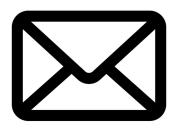
Iterative Teaching by Data Hallucination

Zeju Qiu¹³*, Weiyang Liu¹²*, Tim Z. Xiao⁴, Zhen Liu⁵, Umang Bhatt²⁶, Yucen Luo¹, Adrian Weller²⁶, Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen, ²University of Cambridge, ³Technical University of Munich, ⁴University of Tübingen, ⁵Mila, Université de Montréal, ⁴The Alan Turing Institute

26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023

1. Introduction

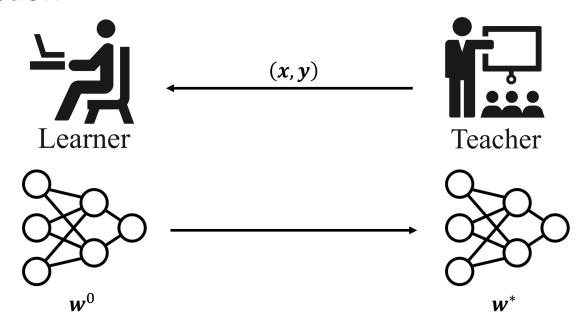


Spam Filter

Adversarial Attacker

Training-set poisoning is a **Machine Teaching** problem!

1. Introduction



2. Framework

Data Hallucination Teaching Framework (DHT)

- Idea: use a generative model / solve an optimization problem to model the teaching process
- Difference to normal generative model:
 - Objective: facilitate convergence (instead of reconstruction)
 - 2. Models a dynamically changing data distribution depending on the learner's status

Limitations of previous IMT methods:

- Teacher's limited modeling flexibility / capability → performance bounded by the data set
- Inefficient → goes through the complete data set at each iteration
- 3. Assume known $w^* \rightarrow$ cannot handle black-box teaching of neural networks

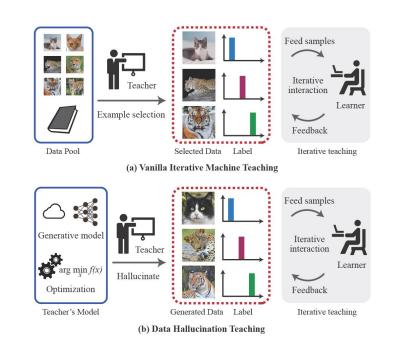


Figure 1: Comparison of vanilla iterative machine teaching and the proposed data hallucination teaching.

3. Problem Setting

Teaching protocol: teacher has access to all the information about the learner (target model parameters w^* , model parameters w_t , learning rate η , loss function ℓ and optimization algorithm (e.g., SGD)) and can only feed sample pair (x^i, y^i) to the student $w^* = \arg\min_{x} \mathbb{E}_{(x,y)} \left\{ \ell\left(x,y|w\right) \right\}$

Teacher's objective: the teacher aims to provide examples to the learner in every iteration such that the learner parameters w converge to the desired parameters w as quickly as possible.

$$\min_{\left\{ \left(oldsymbol{x}^{1},oldsymbol{y}^{1}
ight),\cdots,\left(oldsymbol{x}^{ op},oldsymbol{y}^{ op}
ight)
ight\} }d\left(oldsymbol{w}^{T},oldsymbol{w}^{*}
ight)$$

Learner's objective: the learner minimizes its loss function ℓ with examples given by the teacher.

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - \eta_t \frac{\partial \ell\left(\boldsymbol{x}^{t+1}, \boldsymbol{y}^{t+1} | \boldsymbol{w}^t\right)}{\partial \boldsymbol{w}^t}$$

4. Method Overview

Omniscient Data Hallucination Teaching

- 1. Parametrized Teaching Policy: Data Transformation
- 2. Parametrized Teaching Policy: Generative Modeling

Black-box Data Hallucination Teaching

- Mixup-based Teaching
- 2. Performative Teaching

Main difference between omniscient and black-box machine teaching:

- Omniscient: target model parameters w^* known \rightarrow point-to-point distance
- Black-box: target model parameters w^* unknown \rightarrow point-to-set distance

Greedy Teaching Policy

- Idea: one-step optimization for the optimal sample x conditioned on a uniformly sampled label y
- More formally: for each iteration t, solve the teaching problem by optimizing 1 step of $\min_{\{x^{t+1}\}} d(\mathbf{w}^{t+1}, \mathbf{w}^*)$
- Formulation:

$$\min_{\boldsymbol{x}^{t+1} \in \mathcal{X}, \boldsymbol{y}^{t+1} \sim \mathbb{U}} \eta_t^2 \left\| \frac{\partial \ell\left(\boldsymbol{x}^{t+1}, \boldsymbol{y}^{t+1} | \boldsymbol{w}^t\right)}{\partial \boldsymbol{w}^t} \right\|_2^2 - 2\eta_t \left\langle \boldsymbol{w}^t - \boldsymbol{w}^*, \frac{\partial \ell\left(\boldsymbol{x}^{t+1}, \boldsymbol{y}^{t+1} | \boldsymbol{w}^t\right)}{\partial \boldsymbol{w}^t} \right\rangle$$

- Constraints: x is within \mathcal{X} (e.g., pixel space [0, 255]) and y is within discrete label space
- Problem:
 - 1. Sub-optimal: only consider a one-step update for the learner
 - 2. Computationally expensive if x high-dimensional (e.g., images)
 - 3. Not considering data distribution constraints
 - 4. Not interpretable

Greedy Teaching Policy

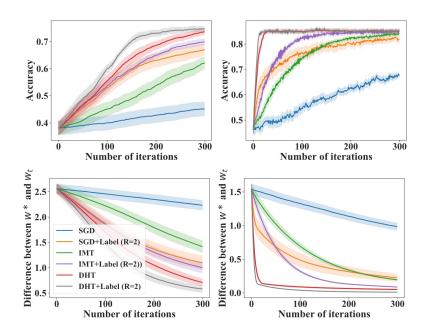
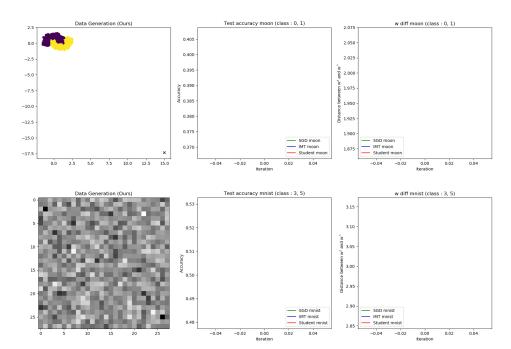


Figure 2: Convergence comparison between our greedy teaching policy with several other baseline methods. Top: half-moon. Bottom: MNIST.

Parametrized Teaching Policy: Data Transformation

- **Idea**: parametrize the teacher by a neural network θ
- Teaching policy: $\pi_{\theta}(x^i, y^i, w_{SG}^i, w^*) = \widetilde{x}$
- More formally: for each iteration t, solve the teaching problem by optimizing v steps of $\min_{\{x^{t+1},...,x^{t+v}\}} d(\mathbf{w}^{t+v},\mathbf{w}^*)$
- Formulation: $\min_{\boldsymbol{\theta}} \| \boldsymbol{w}^{v}(\boldsymbol{\theta}) \boldsymbol{w}^{*} \|_{2}^{2} + \alpha \sum_{i=1} \ell \left(\pi_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{i}, \boldsymbol{y}^{i}, \boldsymbol{w}_{\mathrm{SG}}^{i}, \boldsymbol{w}^{*} \right), \boldsymbol{y}^{i} | \boldsymbol{w}_{\mathrm{SG}}^{i} \right)$ s.t. $\boldsymbol{w}^{v}(\boldsymbol{\theta}) = \arg \min_{\boldsymbol{w}} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y})} \left\{ \ell \left(\pi_{\boldsymbol{\theta}} \left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{w}, \boldsymbol{w}^{*} \right), \boldsymbol{y} | \boldsymbol{w} \right) \right\}$
- Approach: solve this bi-level optimization by unrolling the inner loop and backpropagate through the whole objective
- Constraints: x is within \mathcal{X} (e.g., pixel space [0, 255]) and y is within discrete label space
- Problem:
 - 1. Not considering data distribution constraints
 - 2. Not interpretable

Parametrized Teaching Policy: Data Transformation



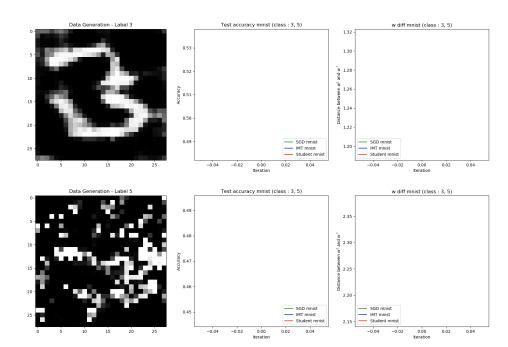
Parametrized Teaching Policy: Generative Modelling

- **Idea**: parametrize π_{θ} with a generative model and impose a distribution divergence constraint $\mathrm{Div}(p(\pi), p(x)) \leq \epsilon$
- Formulation 1 (GAN):
 - Teaching space: $\pi_{\theta} = x$
 - Teacher θ act as a generator G

$$\min_{\boldsymbol{\theta}} \max_{D} \mathbb{E}_{\tilde{\boldsymbol{x}} \sim p_{\pi}(\boldsymbol{z})} \log \left(1 - D(\pi_{\boldsymbol{\theta}}(\boldsymbol{z})) \right) + \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})} \log \left(D(\boldsymbol{x}) \right) + \|\boldsymbol{w}^{v}(\boldsymbol{\theta}) - \boldsymbol{w}^{*}\|_{2}^{2} \\
+ \alpha \sum_{i=1}^{v} \ell \left(\pi_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{x}^{i}, \boldsymbol{y}^{i}, \boldsymbol{w}_{\mathrm{SG}}^{i}, \boldsymbol{w}^{*}), \boldsymbol{y}^{i} | \boldsymbol{w}_{\mathrm{SG}}^{i} \right) \\
\text{s.t. } \boldsymbol{w}^{v}(\boldsymbol{\theta}) = \arg \min_{\boldsymbol{w}} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y})} \left\{ \ell \left(\pi_{\boldsymbol{\theta}}(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{w}, \boldsymbol{w}^{*}), \boldsymbol{y} \right) | \boldsymbol{w} \right\}$$

- Formulation 2 (VAE):
 - Teaching space: $\pi_{\theta} = u$
 - Pre-train VAE on the full data set to capture p(x)
- $\min_{\boldsymbol{\theta}} \|\boldsymbol{w}^{v} \boldsymbol{w}^{*}\|_{2}^{2} + \alpha \sum_{i=1}^{n} \ell\left(p_{\boldsymbol{\psi}}\left(\pi_{\boldsymbol{\theta}}\right) | \boldsymbol{w}_{\mathrm{SG}}^{i}\right) + \mathrm{KL}\left(\pi_{\boldsymbol{\theta}} || p(\boldsymbol{u})\right)$
- s.t. $\boldsymbol{w}^{v}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{w}} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y})} \left\{ \ell \left(\pi_{\boldsymbol{\theta}} \left(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{w}, \boldsymbol{w}^{*} \right), \boldsymbol{y} \right) | \boldsymbol{w} \right\}$
- Data recovered using the pre-trained decoder $p_{\varphi}(x, y|u)$

Parametrized Teaching Policy: Generative Modelling



Privacy-preserving Teaching via constrained DHT

- Motivation: generating samples that are semantically distinct from the original data distribution could be beneficial
- Examples: medical domain, do not wish to leak sensitive information about the patient
- Goal: generate samples that differentiate from a privacy set by some distance metrics (e.g., perceptual loss)
- Formulation:

$$\min_{\boldsymbol{\theta}} \|\boldsymbol{w}^{v}(\boldsymbol{\theta}) - \boldsymbol{w}^{*}\|_{2}^{2} + \sum_{t=1} \ell(\boldsymbol{\pi}_{\boldsymbol{\theta}}, \boldsymbol{y}) |\boldsymbol{w}^{t}) + \max \left\{ 0, \epsilon - \|\phi(\boldsymbol{\pi}_{\boldsymbol{\theta}}) - \phi(\boldsymbol{x})\|_{2}^{2} \right\}$$
s.t.
$$\|\phi(\boldsymbol{\pi}_{\boldsymbol{\theta}}) - \phi(\boldsymbol{x})\|_{2}^{2} \leq \epsilon$$

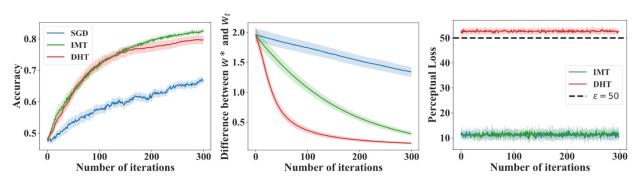


Figure 3: Convergence of privacy-preserving teaching on MNIST. Private perceptual distance of the synthesized samples during teaching. ε is a prescribed distance threshold.

- Black-box teaching for neural network has been an open challenge in iterative machine teaching!
- Goal: improve the learner's generalization instead of its convergence to some w^*
- Challenges:
 - 1. The optimal learner parameters w^* is no longer given
 - 2. Unclear weight encoding
 - 3. Difficult to generate plausible samples given no information to w_t and w^*
- Approach: seek a surrogate for w^* from the underlying joint data and label distribution $\mathbb{P}_{real} \to validation$ accuracy

$$oldsymbol{w}^* = rg\min_{oldsymbol{w}} \mathbb{E}_{(oldsymbol{x},oldsymbol{y}) \sim \mathbb{P}_{ ext{real}}} \left\{ \ell(oldsymbol{x},oldsymbol{y} | oldsymbol{w})
ight\}$$

Mixup-based Teaching

- Intuition: teaching space reduction!
- Idea: simplify the problem by learning to predict the learner-conditioned interpolation coefficient λ from Mixup
- Approach: inspiration using optimization techniques from neural architectural search
- Surrogate target: the validation accuracy on a held-out validation data set
- Teaching space: $\pi_{m{ heta}}ig((m{x}_1,m{y}_1),(m{x}_2,m{y}_2),m{w}^tig)=\lambda_{m{ heta}}m{x}_1+(1-\lambda_{m{ heta}})m{x}_2$
- Teaching policy: $\lambda_{m{ heta}} = h_{m{ heta}}((m{x}_1, m{y}_1), (m{x}_2, m{y}_2), m{w}^t)$
- Weight w^t, approximated through model queries:
 - current iteration
 - · average training loss
 - best validation loss

Performative Teaching

- Performative Prediction: model prediction influences the data distribution
- Idea: turn teaching neural network into teaching deep latent features (linear)
- Approach:
 - $w^*(t)$ is obtained by updating the linear classifier w^t for v steps
 - \tilde{x} is obtained by feature space perturbation / optimizing along the feature space hypersphere surface
 - ε -neighborhood constraint: $||x \widetilde{x}|| \le \epsilon$
- Formulation: $\min_{(m{x}_t,m{y}_t)}dig(m{w}^t,m{w}^*(t)ig)$ s.t. $m{w}^*(t)\sim\mathcal{M}(m{x}_{t-1},m{y}_{t-1})$
- Intuition: lookahead optimization, implicit data augmentation
- Why performative?

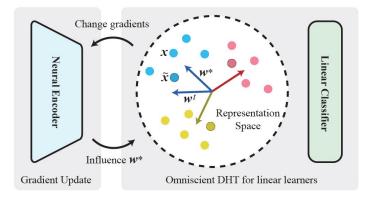


Figure 4: Performative teaching for black-box neural learners.

Wang, Yulin, et al. "Implicit semantic data augmentation for deep networks." *NeurIPS* (2019). Perdomo, Juan, et al. "Performative prediction." *ICML*. PMLR, 2020.

Performative Teaching

- Performative Prediction: model prediction influences the data distribution
- Idea: turn teaching neural network into teaching deep latent features (linear)
- · Approach:
 - $w^*(t)$ is obtained by updating the linear classifier w^t for v steps
 - \tilde{x} is obtained by feature space perturbation / optimizing along the feature space hypersphere surface
 - ε -neighborhood constraint: $||x \widetilde{x}|| \le \epsilon$
- Formulation: $\min_{(m{x}_t,m{y}_t)}dig(m{w}^t,m{w}^*(t)ig)$ s.t. $m{w}^*(t)\sim\mathcal{M}(m{x}_{t-1},m{y}_{t-1})$
- **Intuition**: lookahead optimization, implicit data augmentation
- Why performative?

Algorithm 1 Performative teaching for neural learners

<u>1</u>. Randomly initialize the neural network. We denote the neural weights of g_1 as v, and the neural weights of g_2 as w;

for $i = 1, 2, \dots, T_1$ do

2. Form a mini-batch of m samples and perform inference to extract features, denoted as $(\boldsymbol{x}^i, \boldsymbol{y}^i_1), \dots, (\boldsymbol{x}^i_m, \boldsymbol{y}^i_m)$.

3. $w_{\text{buffer}} \leftarrow w$.

4. Fix v and update w by minimizing the empirical risk on the training set (e.g., a) few SGD steps).

 $\underline{\mathbf{5}}$. $\boldsymbol{w}^* \leftarrow \boldsymbol{w}$ and then $\boldsymbol{w} \leftarrow \boldsymbol{w}_{\text{buffer}}$.

for $j=1,2,\cdots,m$ do

6. Solve the greedy teaching problem for the j-th sample:

$$\begin{split} \tilde{\boldsymbol{x}}_{j}^{i} &= \arg\min_{\boldsymbol{x}} \; \eta_{t}^{2} \left\| \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y}_{j}^{i} | \boldsymbol{w})}{\partial \boldsymbol{w}} \right\|_{2}^{2} \\ &- 2\eta_{t} \langle \boldsymbol{w} - \boldsymbol{w}^{*}, \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y}_{j}^{i} | \boldsymbol{w})}{\partial \boldsymbol{w}} \rangle \end{split}$$
s.t.
$$\left\| \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|} - \frac{\boldsymbol{x}_{j}^{i}}{\|\boldsymbol{x}_{i}^{i}\|} \right\| \leq \epsilon, \; \|\boldsymbol{x}\| = \|\boldsymbol{x}_{j}^{i}\| \end{split}$$

end

7. Use SGD to update the neural network (\boldsymbol{w} and \boldsymbol{v}) by replacing $(\boldsymbol{x}_1^i, \boldsymbol{y}_1^i), \dots, (\boldsymbol{x}_m^i, \boldsymbol{y}_m^i)$ with $(\tilde{\boldsymbol{x}}_1^i, \boldsymbol{y}_1^i), \dots, (\tilde{\boldsymbol{x}}_m^i, \boldsymbol{y}_m^i)$.

end

Wang, Yulin, et al. "Implicit semantic data augmentation for deep networks." *NeurIPS* (2019). Perdomo, Juan, et al. "Performative prediction." *ICML*. PMLR, 2020.

Parametrized Teaching Policy: Generative Modelling

Dataset	Learner	SGD	Random Policy	DHT
MNIST	MLP	92.45 ± 0.07	92.47 ± 0.06	95.02 ± 0.04
CIFAR-10	CNN-3	87.30 ± 0.28	87.17 ± 0.17	88.77 ± 0.35
	CNN-6	90.34 ± 0.10	90.20 ± 0.09	$\boldsymbol{91.61 \pm 0.23}$
	CNN-9	91.10 ± 0.26	91.12 ± 0.12	92.30 ± 0.13
	CNN-15	91.85 ± 0.28	91.67 ± 0.13	92.44 ± 0.15
CIFAR-100	CNN-3	62.10 ± 0.29	62.04 ± 0.11	62.69 ± 0.37
	CNN-6	65.02 ± 0.24	64.96 ± 0.17	66.81 ± 0.17
	CNN-9	67.05 ± 0.29	67.19 ± 0.23	69.23 ± 0.34
	CNN-15	68.39 ± 0.39	68.49 ± 0.17	68.96 ± 0.36

Table 1: Testing accuracy (%) of performative teaching. Multiple types of neural learners (e.g., MLP and CNN) are considered.

Method	Accuracy (%)	
ERM	61.75	
cMixup	66.27	
dMixup	65.80	
Unrolling	65.18	
Policy gradient	$\boldsymbol{67.64}$	

Table 2: Empirical results on CIFAR-10.

5. Summary

Contribution

- We propose a novel teaching framework Data Hallucination Teaching (DHT), where the teacher iteratively generates synthetic training data depending on the learner's status. DHT yields a highly flexible teaching space.
- In the DHT framework, we comprehensively study the teaching policies under both the omniscient and black-box scenarios.
- We propose a novel performative formulation for iterative teaching, which assumes a dynamically changing teaching target. The formulation is shown to be a natural fit for teaching black-box neural learners.
- For the first time, we are able to apply iterative teaching to black-box neural learners on realistic datasets. Significant performance gain is observed empirically.
- We demonstrate faster convergence of DHT versus SGD and other baselines, both theoretically and empirically.