.o\{'
NEURAL INFORMATION
'f PROCESSING SYSTEMS NeurlPS 2021
ole

Iterative Teaching by Label Synthesis

Weiyang Liu*  Zhen Liu*  Hanchen Wang*
Liam Paull  Bernhard Scholkopf  Adrian Weller

X Planck Institute for [ I e

[ UNIVERSITY OF g2 X7 .
CAMBRIDGE ol Intelllgent Systems -.:.:)_;g M | I a



lterative Machine Teaching (IMT)

e How it works?

o The learner is some machine learning model that aims to learn a set of target parameters.

o The communication between the teacher and learner is contrained to be examples.
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lterative Machine Teaching (IMT)

e Comparison to other machine learning paradigms
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The teacher and learner interact with each other iteratively!



Existing problems that motivate our method

e Classic IMT algorithms need to traverse the entire dataset to obtain the
teaching examples for the learner.

o Computationally expensive and not scalable to large datasets!

e Classic IMT algorithms typically restrict the teaching to example selection.

o Low teaching capacity!

e Classic IMT algorithms solve a combinatorial problem by nature.

o Nontrivial to learn a parameterized teaching policy!



Existing problems that motivate our method

Classic IMT algorithms

e Need to traverse the entire dataset to obtain the teaching examples for the
learner

o Computationally expensive and not scalable to large datasets!

e Solve a combinatorial problem by nature
o Nontrivial to learn a parameterized teaching policy!

e Typically restrict the form of teaching to example selection



Our Approach: Label Synthesis Teaching (LAST)

e \We aim to avoid the traverse of the entire dataset by teaching the learner
through label synthesis instead of example selection.
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Why label synthesis?

e Effectively avoids traversing the dataset.
e Yields a computational cost that is independent of the dataset size.

e Provides a unified framework to think about label smoothing, knowledge
distillation, etc.

e Has the same convergence speed-up guarantees as IMT.

Theorem 1 (Exponential teachability). Assume that the learner loss function {; has the property of
interpolation, L;-Lipschitz, and convexity. And f is order-1 . strongly convex. Then LAST can achieve

ET with g(y) =c1||w' —w*|, i.e, E{|[wT —w*||*} < (1—c1nefi+cinf L) T ||w® — w*H2 where
Lmax=max; L; and =", ju; /n. It implies that (log %)_1 log(L) samples are needed to achieve
E{||lwT — w*||?} < e ca=1—cineji+cIn? Lmax and ¢y is adjusted such that 0 < c1n¢ < fi/ Liax.
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Two LAST variants

e LAST is solving the following optimizaiton in general (d is some discrepancy measure)

min{yl,,,, yT} d(wT, w*)
s N

learner’s parameters after T steps target parameters

e Two ways of approximating the solution

o  One-step approximation with greedy LAST:

min d(w", w*)
yl

o  Multi-step approximation with parameterized LAST:
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Greedy LAST

e Intuition: synthesize the label that leads to the maximum discrepancy reduction.

e Step 1: randomly select an example from the dataset.

e Step 2: generate the label of the selected example with
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e Step 3: update the learner with gradients using the synthesized label
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Parameterized LAST

e Intuition: use a parameterized teaching policy and learn it end-to-end by (1)
unrolling multi-step gradient updates or (2) policy gradients.

e Nested Optimization: solve the following optimization by performing gradient
descent on theta.
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Parameterized LAST

e Intuition: use a parameterized teaching policy and learn it end-to-end.

e Nested Optimization: solve the following optimization by performing gradient
descent on theta.
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Ways to learn the parameterized LAST
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Teaching least square regression learners

e SGD, IMT, Greedy LAST
e Greedy LAST + IMT: first use IMT to select examples and then use greedy
LAST to synthesize labels.
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Teaching logistic regression learners

e Greedy LAST
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Teaching logistic regression learners

e Parameterized LAST

o Hyperparameters and settings are slightly different from the previous experiments.
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How LAST changes the ground truth label
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Summary

e \We propose a novel iterative teaching paradigm by label synthesis.

e Advantages of LAST

o Scalable: applicable to large datasets

o Flexible: applicable in various settings and well connected to existing soft label methods
o Easy to train: the parameterized LAST is end-to-end trainable

o Theoretically guaranteed: yielding the same convergence speed-up as IMT

o Empirically validated: achieving comparable or better empirical convergence as IMT



