

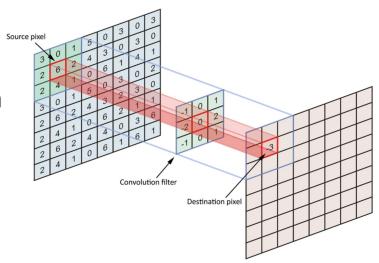
Decoupled Networks

Weiyang Liu*, Zhen Liu*, Zhiding Yu, Bo Dai, Rongmei Lin, Yisen Wang, James M. Rehg, Le Song

(* indicates equal contributions)

Motivation I

- Convolution works well by incorporating our prior knowledge on images (compared to MLP).
- Specifically, it computes inner product-based similarity in a sliding window fashion.

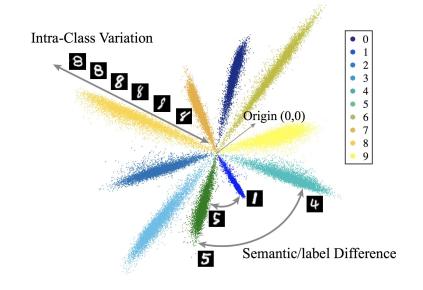


Questions:

- Why should inner product be the optimal similarity measure (despite the simplicity)?
- Is there better similarity prior for specific tasks?

Motivation II

 The original inner product based convolution operator learns naturally decoupled features.



- norm of feature = intra-class variation
- angle of feature = semantic difference
- We can explicitly model both intra-class variation and semantic difference with decoupled convolution framework.

Decoupled Convolution

Original Inner Product-based Convolution

$$< w, x >= ||w|| \cdot ||x|| \cdot cos(\theta_{w,x})$$

naturally decoupled

Decoupled Convolution

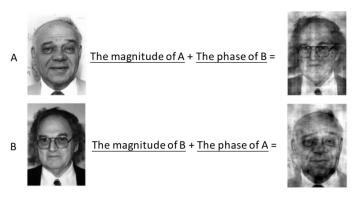
$$f(w,x) = \underbrace{h(\|w\|,\|x\|)} \cdot \underbrace{g(\theta_{w,x})}$$

Magnitude: intra-class variation

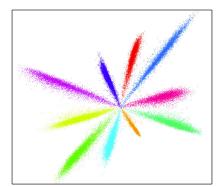
Angle: semantic difference

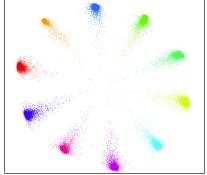
Case Study: Hyperspherical Convolution

- Hyperspherical Convolution (SphereConv) models the norm by $h(\|\boldsymbol{w}\|,\|\boldsymbol{x}\|) = \alpha$.
- SphereConv ignores intra-class variation by discarding all magnitude information.



Intuition: The identity information is preserved by phase in 2D Fourier transform.





2D feature visualization on MNIST shows that SphereConv can compress the intra-class variation.

Example Designs

Magnitude (norm) Functions

SphereConv - Project onto unit sphere

$$h(\|\boldsymbol{w}\|,\|\boldsymbol{x}\|) = \alpha$$

BallConv - Project onto unit ball

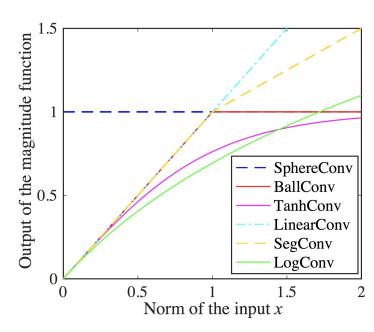
$$h(\|\boldsymbol{w}\|,\|\boldsymbol{x}\|) = \alpha \min(\|\boldsymbol{x}\|,\rho)/\rho$$

TanhConv - Soft BallConv

$$h(\|\boldsymbol{w}\|,\|\boldsymbol{x}\|) = \alpha \tanh\left(\frac{\|\boldsymbol{x}\|}{\rho}\right)$$

LinearConv - Only project weights

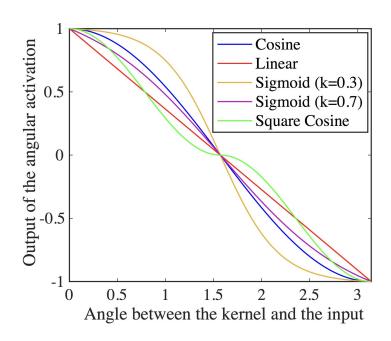
$$h(\|\boldsymbol{w}\|,\|\boldsymbol{x}\|) = \alpha \|\boldsymbol{x}\|$$



Example Designs

Angular Functions

- Square Cosine $g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = \operatorname{sign}(\cos(\theta)) \cdot \cos^2(\theta)$
- Linear $g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = -\frac{2}{\pi}\theta_{(\boldsymbol{w},\boldsymbol{x})} + 1$
- Cosine $g(\theta_{(m{w},m{x})})\!=\!\cos(\theta_{(m{w},m{x})})$
- Sigmoid (refer to the paper)



Properties of the magnitude function

• Smoothness: whether the magnitude function is differentiable everywhere. It affects the optimization of the neural network.

 Boundedness: whether the value of the magnitude function is bounded. It affects the adversarial robustness of the neural network (due to the Lipschitz constant).

Special Case: Bounded Magnitude Function

When the magnitude function is bounded, it has the following advantage:

- Adversarial Robustness: Bounded operators have smaller Lipschitz constant, which is more robust against adversarial attacks
- Optimization: Boundedness can improve optimization, which is both theoretically and empirically validated by some recent results*.

^{* [1]} Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, Aleksander Mądry. How Does Batch Normalization Help Optimization? (No, It Is Not About Internal Covariate Shift), arXiv:1805.11604.
[2] Liu, et al. Deep Hyperspherical Learning, NIPS 2017.

CNN without BN or without ReLU on CIFAR-100

Operators can significantly outperform baselines w/o BN

Method	Linear	Cosine	Sq. Cosine
CNN Baseline	-	35.30	-
LinearConv	33.39	31.76	N/C
TanhConv	32.88	31.88	34.26
SegConv	34.69	30.34	N/C

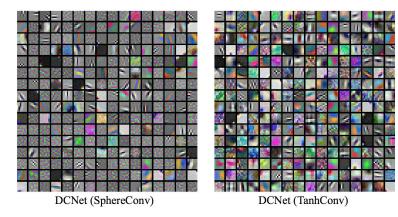
Operators can significantly outperform baselines w/o ReLU

Method	Cosine	Sq. Cosine	Cosine	Sq. Cosine
Metriod	w/o ReLU	w/o ReLU	w/ ReLU	w/ ReLU
Baseline	58.24	-	26.01	-10
SphereConv	33.31	25.90	26.00	26.97
BallConv	31.81	25.43	25.18	26.48
TanhConv	32.27	25.27	25.15	26.94
LinearConv	36.49	24.36	24.81	25.14
SegConv	33.57	24.29	24.96	25.04
LogConv	33.62	24.91	25.17	25.85
MixConv	33.46	24.93	25.27	25.77

ImageNet Results

Decoupled operators are exceptionally good on specific architectures.

Method	Standard ResNet-18	Modified ResNet-18	Modified ResNet-18
	w/ BN	w/ BN	w/o BN
Baseline	12.63	12.10	N/C
SphereConv	12.68*	11.55	13.30
LinearConv	11.99*	11.50	N/C
TanhConv	12.47*	11.10	12.79



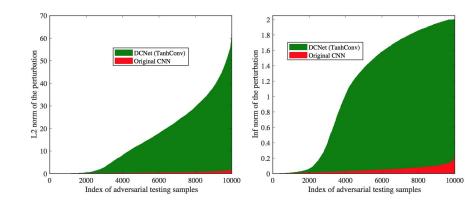
Robustness Against Adversarial Attacks

 Our operators are naturally robust against attacks.

Natural Training Adversarial Training

	Target models			
Attack	Baseline	SphereConv	BallConv	TanhConv
None	85.35	88.58	91.13	91.45
FGSM	18.82	43.64	50.47	52.60
BIM	8.67	8.89	7.74	10.18
None	83.70	87.41	87.47	87.54
FGSM	78.96	85.98	82.20	81.46
BIM	7.96	35.07	17.38	19.86

 To attack decoupled networks, it takes much more efforts (L2 norm).



From Function Approximation perspective

• Convolutional neural networks (CNNs) can be viewed as special cases of feed-forward neural networks (or multi-layer perceptrons).

 Although MLPs can achieve the universal approximation, but in practice, CNNs usually work much better than MLPs in vision tasks.

From Function Approximation perspective

- Implication I: which nonlinear function class we use really matters (even if they can be equivalent in theory).
- Implication II: the function class we use should be task-dependent. learning/regularizing/constraining the function class for different tasks is appealing.
- Implication III: our decoupled convolution can be viewed as regularizing the function class of CNNs by using a different similarity measure.

The End

Thank you!

Welcome to our poster for further questions!

F21, Tuesday 4:30-6:30 @ Halls C-E