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Abstract

In this paper, we propose a conceptually simple and ge-
ometrically interpretable objective function, i.e. additive
margin Softmax (AM-Softmax), for deep face verification.
In general, the face verification task can be viewed as a
metric learning problem, so learning large-margin face fea-
tures whose intra-class variation is small and inter-class
difference is large is of great importance in order to achieve
good performance. Recently, Large-margin Softmax [10]
and Angular Softmax [9] have been proposed to incorpo-
rate the angular margin in a multiplicative manner. In this
work, we introduce a novel additive angular margin for
the Softmax loss, which is intuitively appealing and more
interpretable than the existing works. We also emphasize
and discuss the importance of feature normalization in the
paper. Most importantly, our experiments on LFW and
MegaFace show that our additive margin softmax loss con-
sistently performs better than the current state-of-the-art
methods using the same network architecture and training
dataset. Our code has also been made available1.

1. Introduction

Face verification is widely used for identity authentica-
tion in enormous areas such as finance, military, public se-
curity and so on. Nowadays, most face verification models
are built upon Deep Convolutional Neural Networks and
supervised by classification loss functions [18, 20, 19, 9],
metric learning loss functions [16] or both [17, 13]. Met-
ric learning loss functions such as contrastive loss [17] or
triplet loss [16] usually require carefully designed sample
mining strategies and the final performance is very sensitive
to these strategies, so increasingly more researchers shift
their attentions to building deep face verification models
based on improved classification loss functions [20, 19, 9].

Current prevailing classification loss functions for deep
face recognition are mostly based on the widely-used soft-
max loss. The softmax loss is typically good at optimizing

1https://github.com/happynear/AMSoftmax
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Figure 1. Comparison between the original softmax loss and the
additive margin softmax loss. Note that, the angular softmax [9]
can only impose unfixed angular margin, while the additive margin
softmax incorporates the fixed hard angular margin.

the inter-class difference (i.e., separating different classes),
but not good at reducing the intra-class variation (i.e., mak-
ing features of the same class compact). To address this, lots
of new loss functions are proposed to minimize the intra-
class variation. [20] proposed to add a regularization term
to penalize the feature-to-center distances. In [19, 12, 15],
researchers proposed to use a scale parameter to control the
”temperature” [2] of the softmax loss, producing higher gra-
dients to the well-separated samples to further shrink the
intra-class variance. In [9, 10], the authors introduced an
conceptually appealing angular margin to push the classifi-
cation boundary closer to the weight vector of each class.
[9] also provided a theoretical guidance of training a deep
model for metric learning tasks using the classification loss
functions. [6, 12, 15] also improved the softmax loss by
incorporating differnet kinds of margins.

In this work, we propose a novel and more interpretable
way to import the angular margin into the softmax loss. We
formulate an additive margin via cos θ−m, which is simpler
than [9] and yields better performance. From Equation (3),
we can see thatm is multiplied to the target angle θyi in [9],
so this type of margin is incorporated in a multiplicative
manner. Since our margin is a scalar subtracted from cosθ,
we call our loss function Additive Margin Softmax (AM-
Softmax).

Experiments on LFW BLUFR protocol [7] and
MegaFace [5] show that our loss function with the same
network architecture achieves better results than the current
state-of-the-art approaches.
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2. Preliminaries
To better understand the proposed AM-Softmax loss, we

will first give a brief review of the original softmax and the
A-softmax loss [9]. The formulation of the original softmax
loss is given by

LS = − 1

n

n∑
i=1

log
eW

T
yi

fi∑c
j=1 e

WT
j fi

= − 1

n

n∑
i=1

log
e‖Wyi

‖‖fi‖cos(θyi )∑c
j=1 e

‖Wj‖‖fi‖cos(θj)
,

(1)

where f is the input of the last fully connected layer (fi
denotes the the i-th sample), Wj is the j-th column of the
last fully connected layer. The WT

yifi is also called as the
target logit [14] of the i-th sample.

In the A-softmax loss, the authors proposed to normalize
the weight vectors (making ‖Wi‖ to be 1) and generalize
the target logit from ‖fi‖cos(θyi) to ‖fi‖ψ(θyi),

LAS = − 1

n

n∑
i=1

log
e‖fi‖ψ(θyi )

e‖fi‖ψ(θyi ) +
∑c
j=1,j 6=yi e

‖fi‖cos(θj)
,

(2)
where the ψ(θ) is usually a piece-wise function defined as

ψ(θ) =
(−1)k cos(mθ)− 2k + λcos(θ)

1 + λ
,

θ ∈ [
kπ

m
,

(k + 1)π

m
],

(3)

wherem is usually an integer larger than 1 and λ is a hyper-
parameter to control how hard the classification boundary
should be pushed. During training, the λ is annealing from
1, 000 to a small value to make the angular space of each
class become more and more compact. In their experiments,
they set the minimum value of λ to be 5 and m = 4, which
is approximately equivalent to m = 1.5 (Figure 2).

3. Additive Margin Softmax
In this section, we will first describe the definition of the

proposed loss function. Then we will discuss about the in-
tuition and interpretation of the loss function.

3.1. Definition

[10] defines a general function ψ(θ) to introduce the
large margin property. Motivated by that, we further pro-
pose a specific ψ(θ) that introduces an additive margin to
the softmax loss function. The formulation is given by

ψ(θ) = cosθ −m. (4)

Compared to the ψ(θ) defined in L-Softmax [10] and A-
softmax [9] (Equation (3)), our definition is more simple
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Figure 2. ψ(θ) for conventional Softmax, Angular Softmax [9]
and our proposed Hard Margin Softmax. For Angular Softmax, we
plot the logit curve for three parameter sets. From the curves we
can infer that m = 4, λ = 5 lies between conventional Softmax
and Angular Softmax with m = 2, λ = 0, which means it is
approximately m = 1.5. Our proposed Additive Margin Softmax
with optimized parameter m = 0.35 is also plotted and we can
observe that it is similar with Angular Softmax withm = 4, λ = 5
in the range [0◦, 90◦], in which most of the real-world θs lie.

and intuitive. During implementation, the input after nor-
malizing both the feature and the weight is actually x =

cosθyi =
WT

yi
fi

‖Wyi
‖‖fi‖ , so in the forward propagation we only

need to compute

Ψ(x) = x−m. (5)

In this margin scheme, we don’t need to calculate the gra-
dient for back-propagation because Ψ′(x) = 1. It is much
easier to implement compared with SphereFace [9].

Since we use cosine as the similarity to compare two
face features, we follow [19, 11, 12] to apply both feature
normalization and weight normalization to the inner prod-
uct layer in order to build a cosine layer. Then we scale
the cosine values using a hyper-parameter s as suggested in
[19, 11, 12]. Finally, the loss function becomes

LAMS = − 1

n

n∑
i=1

log
es·(cosθyi−m)

es·(cosθyi−m) +
∑c
j=1,j 6=yi e

s·cosθj

= − 1

n

n∑
i=1

log
es·(W

T
yi

fi−m)

es·(W
T
yi

fi−m) +
∑c
j=1,j 6=yi e

sWT
j fi

.

(6)
In this paper, we assume that the norm of bothWi and f are
normalized to 1 if not specified. In [19], the authors pro-
pose to let the scaling factor s to be learned through back-
propagation. However, after the margin is introduced into
the loss function, we find that the s will not increase and
the network converges very slowly if we let s to be learned.
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Figure 3. Conventional Softmax’s decision boundary and Addi-
tive Margin Softmax’s decision boundary. For conventional soft-
max, the decision boundary is at P0, whereWT

1 P0 =WT
2 P0. For

AM-Softmax, the decision boundary for class 1 is at P1, where
WT

1 P1 −m = WT
2 P1 = WT

1 P2. Note that the distance marked
on this figure doesn’t represent the real distances. The real distance
is a function of the cosine of the angle, while in this figure we use
the angle as the distance for better visualization effect. Here we
use the word “center” to represent the weight vector of the cor-
responding class in the last inner-product layer, even though they
may not be exactly the mean vector of the features in the class. The
relationship between the weight vector (“agent”) and the features’
mean vector (“center”) is described in Figure 6 of [19].

Thus, we fix s to be a large enough value, e.g. 30, to accel-
erate and stablize the optimization.

As described in Section 2, [10, 9] propose to use an an-
nealing strategy to set the hyper-parameter λ to avoid net-
work divergence. However, to set the annealing curve of λ,
lots of extra parameters are introduced, which are more or
less confusing for starters. Although properly tuning those
hyper-parameters for λ could lead to impressive results, the
hyper-parameters are still quite difficult to tune. With our
margin scheme, we find that we no longer need the help
of the annealing strategy. The network can converge flex-
ibly even if we fix the hyper-parameter m from scratch.
Compared to SphereFace [9], our additive margin scheme
is more friendly to those who are not familiar with the ef-
fects of the hyper-parameters. Another recently proposed
additive margin is also described in [6]. Our AM-Softmax
is different than [6] in the sense that our feature and weight
are normalized to a predefined constant s. The normaliza-
tion is the key to the angular margin property. Without the
normalization, the margin m does not necessarily lead to
large angular margin.

3.2. Discussion

3.2.1 Geometric Interpretation

Our additive margin scheme has a clear geometric interpre-
tation on the hypersphere manifold. In Figure 3, we draw
a schematic diagram to show the decision boundary of both
conventional softmax loss and our AM-Softmax. For ex-

ample, in Figure 3, the features are of 2 dimensions. After
normalization, the features are on a circle and the decision
boundary of the traditional softmax loss is denoted as the
vector P0. In this case, we have WT

1 P0 = WT
2 P0 at the

decision boundary P0.
For our AM-Softmax, the boundary becomes a marginal

region instead of a single vector. At the new boundary
P1 for class 1, we have WT

1 P1 − m = WT
2 P1, which

gives m = (W1 −W2)TP1 = cos(θW1,P1
)− cos(θW2,P1

).
If we further assume that all the classes have the same
intra-class variance and the boundary for class 2 is at P2,
we can get cos(θW2,P1) = cos(θW1,P2) (Fig. 3). Thus,
m = cos(θW1,P1

) − cos(θW1,P2
), which is the difference

of the cosine scores for class 1 between the two sides of the
margin region.

3.2.2 Angular Margin or Cosine Margin

In SphereFace [9], the margin m is multiplied to θ, so the
angular margin is incorporated into the loss in a multiplica-
tive way. In our proposed loss function, the margin is en-
forced by subtracting m from cos θ, so our margin is in-
corporated into the loss in an additive way, which is one of
the most significant differences than [9]. It is also worth
mentioning that despite the difference of enforcing margin,
these two types of margin formulations are also different
in the base values. Specifically, one is θ and the other is
cos θ. Although usually the cosine margin has an one-to-
one mapping to the angular margin, there will still be some
difference while optimizing them due to the non-linearity
induced by the cosine function.

Whether we should use the cosine margin depends on
which similarity measurement (or distance) the final loss
function is optimizing. Obviously, our modified softmax
loss function is optimizing the cosine similarity, not the an-
gle. This may not be a problem if we are using the con-
ventional softmax loss because the decision boundaries are
the same in these two forms (cos θ1 = cos θ2 ⇒ θ1 = θ2).
However, when we are trying to push the boundary, we will
face a problem that these two similarities (distances) have
different densities. Cosine values are more dense when the
angles are near 0 or π. If we want to optimize the angle,
an arccos operation may be required after the value of the
inner product WTf is obtained. It will potentially be more
computationally expensive.

In general, angular margin is conceptually better than
the cosine margin, but considering the computational cost,
cosine margin is more appealing in the sense that it could
achieve the same goal with less efforts.

3.2.3 Feature Normalization

In the SphereFace model [9], the authors added the weight
normalization based on Large Margin Softmax [10], leaving
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Figure 4. Feature distribution visualization of several loss functions. Each point on the sphere represent one normalized feature. Different
colors denote different classes. For SphereFace [9], we have already tried to use the best hyper-parameters we could find.
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Figure 5. The feature gradient norm w.r.t. the feature norm for
softmax loss with and without feature normalization. The gradi-
ents are calculated using the weights from a converged network.
The feature direction is selected as the mean vector of one selected
target center and one nearest class center. Note that the y-axis is
in logarithmic scale for better visualization. For softmax loss with
feature normalization, we set s = 30. That is why the intersection
of these two curves is at 30.

the feature still not normalized. Our loss function, follow-
ing [19, 12, 15], applies feature normalization and uses a
global scale factor s to replace the sample-dependent fea-
ture norm in SphereFace [9]. One question arises: when
should we add the feature normalization?

Our answer is that it depends on the image quality. In
[15]’s Figure 1, we can see that the feature norm is highly
correlated with the quality of the image. Note that back
propagation has a property that,

y =
x

α
⇒ dy

dx
=

1

α
. (7)

Thus, after normalization, features with small norms will
get much bigger gradient compared with features that have
big norms (Figure 5). By back-propagation, the network
will pay more attention to the low-quality face images,
which usually have small norms. Its effect is very similar
with hard sample mining [16, 8]. The advantages of feature
normalization are also revealed in [11]. As a conclusion,
feature normalization is most suitable for tasks whose im-
age quality is very low.

From Figure 5 we can see that the gradient norm may
be extremely big when the feature norm is very small.

This potentially increases the risk of gradient explosion,
even though we may not come across many samples with
very small feature norm. Maybe some re-weighting strat-
egy whose feature-gradient norm curve is between the two
curves in Figure 5 could potentially work better. This is an
interesting topic to be studied in the future.

3.2.4 Feature Distribution Visualization

To better understand the effect of our loss function, we de-
signed a toy experiment to visualize the feature distribu-
tions trained by several loss functions. We used Fashion
MNIST [21] (10 classes) to train several 7-layer CNN mod-
els which output 3-dimensional features. These networks
are supervised by different loss functions. After we obtain
the 3-dimensional features, we normalize and plot them on
a hypersphere (ball) in the 3 dimensional space (Figure 4).

From the visualization, we can empirically show
that our AM-Softmax performs similarly with the best
SphereFace [9] (A-Softmax) model when we set s =
10,m = 0.2. Moreover, our loss function can further
shrink the intra-class variance by setting a larger m, while
A-Softmax starts to degrade when λ < 0.5. Compared to
A-Softmax [9], the AM-Softmax loss also converges eas-
ier with proper scaling factor s. The visualized 3D features
well demonstrates that AM-Softmax could bring the large
margin property to the features without tuning too many
hyper-parameters.

4. On Automatic Hyper-Parameter Tuning

In our AM-Sotmax loss, we introduce two hyper-
parameters into the conventional softmax loss function.
However, tuning hyper-parameters is usually very tricky
and time-consuming. Similar problems also appear in
SphereFace [9]. In this section, we will provide some pre-
liminary experiments and discussions about how to auto-
matically tuning the hyper-parameters m and s. We hope
that our observation could provide some useful insights and
may inspire future works.
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Figure 6. Illustration of the latent margin for a single sample. Note
that the weight vectors (×) are not at the center of the clusters.
They will shift to be far away from other feature vectors. We call
these weight vectors as the agents of their corresponding class (See
[19] for details).

4.0.1 Latent Margin

To make things clear, we call the modified loss function
proposed in [19] as Cosine Softmax Loss because it is opti-
mizing the cosine similarity instead of the traditional inner-
product similarity. The following analysis is based on the
Cosine Softmax Loss. Following our convention, we as-
sume that all the Wi and f are normalized to 1.

In the two-class (labeled as “0” and “1”) scenario, the
Cosine Softmax Loss for one sample is defined as,

LCS2 = −log es·W
T
1 f

es·W
T
1 f + es·W

T
2 f
. (8)

Here we assume that the ground truth label for this sample is
1. Through optimization, this loss function will push WT

1 f
higher and make WT

2 f lower, so it will create a margin be-
tween WT

1 f and WT
2 f (Figure 6). Since the margin is not

directly corresponding to Euclidean space or angular space,
we call this margin as latent margin,

mlatent = WT
1 f −WT

2 f . (9)

By collecting all the target and non-target logits, we can
compute the empirical distribution of latent margin for a bi-
nary classification model. The latent margin empirical dis-
tribution reflects the discriminative capacity of the features
learned by this model. The latent margin may not neces-
sarily improve the accuracy for a classification task. But
for metric learning tasks (e.g., face verification), the margin
is very crucial for the improving the performance (Refer to
Property 2 in [9]).

4.0.2 The LogSumExp Function

For the case of multiple classes, it is more complicated to
analyze the latent margin because we will have C − 1 non-
target logits for every single sample. To simplify the anal-
ysis, we propose to use an equivalent form of the Cosine

Figure 7. Left: The distribution of both normalized target logits
and LSE(f ;‖f‖)

‖f‖ for AM-Softmax loss with s = 30,m = 0.35.
Right: The distribution of mlatent. The mean value (blue dashed
line) of mlatent is about 0.299 and the mode value (red dashed
line) is about 0.359.

Softmax loss function. Therefore, we introduce the Log-
SumExp function2:

LSE(f ; s) = log(
c∑

j=1,j 6=y

esW
T
j f ), (10)

to replace the C − 1 non-target terms in the denominator of
softmax loss. In this way, the softmax operation becomes,

esW
T
yi

f

esW
T
yi

f +
∑c
j=1,j 6=yi e

sWT
j f

=
esW

T
yi

f

esW
T
yi

f + eLSE(f ;s)
.

(11)
Comparing this formulation with Equation 8, we can know
that softmax loss is actually making a “binary” classifica-
tion between sWT

y f and LSE(f ; s), i.e. softmax loss will
push sWT

y f higher and LSE(f ; s) lower. With the help of
the LogSumExp function, we transfer the multi-class soft-
max into a “binary” classifier, so that we can utilize some
properties we have discussed before. Similar to the two-
class scenario, we can also get a latent margin distribution
by aggregating all the

mlatent = WT
y f − LSE(f ; s)

s
. (12)

4.0.3 Auto-tuning m

In Figure 7, we plot the distributions of WT
y f , LSE(f ;s)

s and
the latent margins. As we empirically observe, mlatent fol-
lows a right-skewed distribution with a long-tail in the left,
which cannot be precisely fit by a Gaussian distribution.
The mean value is usually biased from the peak of the dis-
tribution. Therefore, we choose to use the mode instead of
mean value to represent the distribution. The mode value
can be obtained by Mean Shift algorithm with window size
of 0.1.

For the weight normalized softmax loss [9] (without any
angular margin), s should be replaced by ‖f‖. We have
trained such a model with the same settings as Section 5.1.

2https://en.wikipedia.org/wiki/LogSumExp.
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Figure 8. Left: The distribution of both normalized target logits
and LSE(f ;‖f‖)

‖f‖ for weight normalized softmax loss. Right: The
distribution of mlatent for weight normalized softmax loss. The
mean value of mlatent is about −0.0133.

We find that its mean latent margin is −0.0133, which indi-
cates that the weight normalized softmax loss, as a classifi-
cation loss, cannot create significant margin between WT

y f

and LSE(f ;‖f‖)
‖f‖ (Figure 8).

When the features and weights are both normalized as
[19] does, the loss function could force the model to cre-
ate small latent margins between WT

y f and LSE(f ;s)
s . This

is mainly because the Cosine Softmax Loss is optimiz-
ing the angle between features and weights, while both
the original softmax loss and the weight normalized soft-
max loss mainly optimize the feature norm rather than the
angle[19, 23, 10] after one sample is correctly classified.

After introducing the hyper-parameter m into Cosine
Softmax Loss, the latent margin will continue to increase.
In Figure 9, we show the relationship between the mode
of latent margins and the manually set m. It can be ob-
served that when m = 0, the model has a latent margin of
about 0.1, which is a small but not ignorable value. Such
margin is introduce due to the normalization of both fea-
ture and weight, as discussed in [19]. Moreover, we ob-
serve that there exists a point in range (0.35, 0.4) where
m = mmargin. Surprisingly, it can perfectly match the best
m we found in experiments (See Table 5). This observation
leads to an automatic hyper-parameter tuning form. Specif-
ically, we set m = mode(mlatent) on-the-fly during train-
ing. In the experiment section, we will verify such small
trick can avoid tedious hyper-parameter tuning. The exper-
iments show that the m finally converges to 0.378 and the
model yields comparable performance with the other man-
ually tuned m.

Even though this method is based on several observa-
tions and assumptions, it may still reveal some interesting
properties of the softmax loss. This technical report is just a
preliminary study for the automatical hyper-parameter tun-
ing, and more in-depth study will be left for future works.

4.0.4 Auto-tuning s

As we said before in Section 3.1, the network converges
very slowly if we let s to be learned. This was because we
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Figure 9. The mode of latent margins as a function of the manu-
ally set m.

fixed the parameter m, which will make the task defined by
the loss too difficult during the early iterations of optimiza-
tion. Now that we dynamically set the m according to the
discriminative capacity of the model, we can let the s to be
learned through back-propagation again as [19] does. Inter-
estingly, the finaly s is about 38, which is just slightly higher
than the previous best value (30) we set in experiments.

Learning the hyper-parameter s is just one way to avoid
the hyper-parameter tuning. It may not necessarily be the
best way to set the hyper-parameter s. Finding better ways
to automatically tune s is one of our important future works.

5. Experiment

In this section, we will firstly describe the experimen-
tal settings. Then we will discuss the overlapping problem
of the modern in-the-wild face datasets. Finally we will
compare the performance of our loss function with several
previous state-of-the-art loss functions.

5.1. Implementation Details

Our loss function is implemented using Caffe framework
[4]. We follow all the experimental settings from [9], in-
cluding the image resolution, preprocessing method and the
network structure. Specifically speaking, we use MTCNN
[24] to detect faces and facial landmarks in images. Then
the faces are aligned according to the detected landmarks.
The aligned face images are of size 112 × 96, and are nor-
malized by subtracting 128 and dividing 128. Our network
structure follows [9], which is a modified ResNet [1] with
20 layers that is adapted to face recognition.

All the networks are trained from scratch. We set the
weight decay parameter to be 5e−4. The batch size is 256
and the learning rate begins with 0.1 and is divided by 10 at
the 16K, 24K and 28K iterations. The training is finished at
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LFW[3] LFW BLUFR[7] LFW BLUFR[7] LFW BLUFR[7] MegaFace[5] MegaFace[5]
Loss Function m 6, 000 pairs VR@FAR=0.01% VR@FAR=0.1% DIR@FAR=1% Rank1@1e6 VR@FAR=1e−6

Softmax - 97.08% 60.26% 78.26% 50.85% 45.26% 50.12%
Softmax+75% dropout - 98.62% 77.64% 90.91% 63.72% 57.32% 65.58%

Center Loss [20] - 99.00% 83.30% 94.50% 65.46% 63.38% 75.68%
NormFace [19] - 98.98% 88.15% 96.16% 75.22% 65.03% 75.88%
A-Softmax [9] ∼1.5 99.08% 91.26% 97.06% 81.93% 67.41% 78.19%

AM-Softmax 0.25 99.13% 91.97% 97.13% 81.42% 70.81% 83.01%
AM-Softmax 0.3 99.08% 93.18% 97.56% 84.02% 72.01% 83.29%
AM-Softmax 0.35 98.98% 93.51% 97.69% 84.82% 72.47% 84.44%
AM-Softmax 0.4 99.17% 93.60% 97.71% 84.51% 72.44% 83.50%
AM-Softmax 0.45 99.03% 93.44% 97.60% 84.59% 72.22% 83.00%
AM-Softmax 0.5 99.10% 92.33% 97.28% 83.38% 71.56% 82.49%

AM-Softmax auto ∼0.38 99.05% 93.47% 97.51% 84.93% 72.57% 84.17%

AM-Softmax w/o FN 0.35 99.08% 93.86% 97.63% 87.58% 70.71% 82.66%
AM-Softmax w/o FN 0.4 99.12% 94.48% 97.96% 87.31% 70.96% 83.11%

Table 1. Performance on modified ResNet-20 with various loss functions. Note that, for Center Loss [20] and NormFace [19], we used
modified ResNet-28 [20] because we failed to train a model using Center Loss on modified ResNet-20 [9] and the NormFace model was
fine-tuned based on the Center Loss model.

30K iterations. During training, we only use image mirror
to augment the dataset.

In testing phase, We feed both frontal face images and
mirror face images and extract the features from the out-
put of the first inner-product layer. Then the two features
are summed together as the representation of the face im-
age. When comparing two face images, cosine similarity is
utilized as the measurement.

5.2. Dataset Overlap Removal

The dataset we use for training is CASIA-Webface [22],
which contains 494,414 training images from 10,575 identi-
ties. To perform open-set evaluations, we carefully remove
the overlapped identities between training dataset (CASIA-
Webface [22]) and testing datasets (LFW[3] and MegaFace
[5]). Finally, we find 17 overlapped identities between
CASIA-Webface and LFW, and 42 overlapped identities be-
tween CASIA-Webface and MegaFace set1. Note that there
are only 80 identities in MegaFace set1, i.e. over half of
the identities are already in the training dataset. The effect
of overlap removal is remarkable for MegaFace (Table 5.2).
To be rigorous, all the experiments in this paper are based
on the cleaned dataset. We have made our overlap checking
code publicly available3 to encourage researchers to clean
their training datasets before experiments.

Loss Overlap MegaFace MegaFace
Function Removal? Rank1 VR

AM-Softmax No 75.23% 87.06%
AM-Softmax Yes 72.47% 84.44%

Table 2. Effect of Overlap Removal on modified ResNet-20

3https://github.com/happynear/FaceDatasets

In our paper, we re-train some of the previous loss func-
tions on the cleaned dataset as the baselines for compar-
ison. Note that, we make our experiments fair by using
the same network architecture and training dataset for ev-
ery compared methods.

5.3. Effect of Hyper-parameter m

There are two hyper-parameters in our proposed loss
function, one is the scale s and another is the margin m.
The scale s has already been discussed sufficiently in sev-
eral previous works [19, 12, 15]. In this paper, we directly
fixed it to 30 and will not discuss its effect anymore.

The main hyper-parameter in our loss function is the
margin m. In Table 5, we list the performance of our pro-
posed AM-Softmax loss function with m varies from 0.25
to 0.5. From the table we can see that from m = 0.25 to
0.3, the performance improves significantly, and the perfor-
mance become the best when m = 0.35 to m = 0.4.

We also provide the result for the loss function without
feature normalization (noted as w/o FN) and the scale s. As
we explained before, feature normalization performs bet-
ter on low quality images like MegaFace[5], and using the
original feature norm performs better on high quality im-
ages like LFW [3].

In Figure 10, we draw both of the CMC curves to eval-
uate the performance of identification and ROC curves to
evaluate the performance of verification. From this figure,
we can show that our loss function performs much better
than the other loss functions when the rank or false positive
rate is very low.
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Figure 10. Left: CMC curves of different loss functions with 1M distractors on MegaFace[5] Set 1. Right: ROC curves of different loss
functions with 1M distractors on MegaFace[5] Set 1. Note that for Center Loss and NormFace, the backend network is ResNet-28[20],
while others are based on ResNet-20[9]. Even though the curves of the Center Loss model and the NormFace model is close to the
SphereFace model, please keep in mind that part of the performance comes from the bigger network structure.

6. Conclusion and Future Work
In this paper, we propose to impose an additive margin

strategy to the target logit of softmax loss with feature and
weights normalized. Our loss function is built upon the
previous margin schemes[9, 10], but it is more simple and
interpretable. Comprehensive experiments show that our
loss function performs better than A-Softmax [9] on LFW
BLUFR [7] and MegaFace [5].

There is still lots of potentials for the research of the large
margin strategies. There could be more creative way of
specifying the function ψ(θ) other than multiplication and
addition. In our AM-Softmax loss, the margin is a man-
ually tuned global hyper-parameter. How to automatically
determine the margin and how to incorporate class-specific
or sample-specific margins remain open questions and are
worth studying.
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