







# Large-Margin Softmax Loss for Conv. Neural Networks

Weiyang Liu<sup>1\*</sup>, Yandong Wen<sup>2\*</sup>, Zhiding Yu<sup>3</sup>, Meng Yang<sup>4</sup>

<sup>1</sup>Peking University <sup>2</sup>South China University of Technology

<sup>3</sup>Carnegie Mellon University <sup>4</sup>Shenzhen University

#### **Outline**

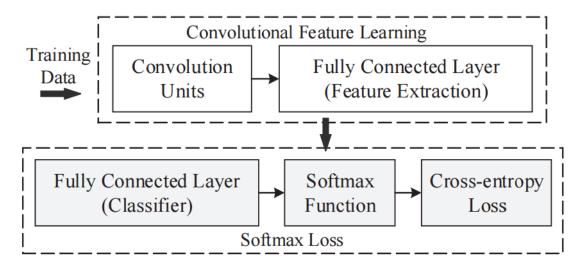


- > Introduction
- Softmax Loss
- Intuition: Incorp. Large Margin to Softmax
- Large-Margin Softmax Loss
- Toy Example
- Experiments
- Conclusions and Ongoing Works

#### Introduction



Many current CNNs can be viewed as conv feature learning guided by a softmax loss on top.



- Other popular losses include hinge loss (SVM loss), contrastive loss, triplet loss, etc.
- Softmax loss is easy to optimize but does not explicitly encourage large margin between different classes.

### Introduction



- Hinge Loss: explicitly favors the large margin property.
- Contrastive Loss: encourages large margin between inter-class pairs, and require distances between intra-class pairs to be smaller than a margin.
- Triplet Loss: similar to contrastive loss, except requiring selected triplets as input. The triplet loss first defines an anchor sample, and select hard triplets to simultaneously minimize the intra-class distances and maximize inter-class distance.
- Large-Margin Softmax (L-Softmax) Loss: generalized softmax loss with large inter-class margin.

#### Introduction



The L-Softmax loss has the following advantages:

- 1. L-Softmax loss defines a **flexible learning task with adjustable difficulty** by controlling the desired margin.
- 2. With adjustable difficulty, L-Softmax can make better use of the "depth" and the learning ability of CNNs by **incorporating more discriminative information**.
- 3. Both contrastive loss and triplet loss require carefully designed pair/triplet selection to achieve best performance, while **L-Softmax** loss directly addresses the entire training set.
- 4. L-Softmax loss can be easily optimized with typical stochastic gradient descent.

## **Softmax Loss**



> Suppose the *i*-th input feature is  $x_i$  with label  $y_i$ , the original softmax loss can be written as

$$L = \frac{1}{N} \sum_{i} L_{i} = \frac{1}{N} \sum_{i} -\log \left( \frac{e^{f_{y_{i}}}}{\sum_{j} e^{f_{j}}} \right)$$

where  $f_j$  denotes the Euclidean dot product of the j-th class, and symbols the activations of a fully connected layer. The above loss can be further rewritten as:

$$L_i = -\log\left(\frac{e^{\|\boldsymbol{W}_{y_i}\|\|\boldsymbol{x}_i\|\cos(\theta_{y_i})}}{\sum_{j} e^{\|\boldsymbol{W}_{j}\|\|\boldsymbol{x}_i\|\cos(\theta_{j})}}\right)$$

# **Intuition: Margin in Softmax**



- Consider the ground truth is class-1. A necessary and sufficient condition for correct classification is:  $\|\mathbf{W}_1\| \|\mathbf{x}\| \cos(\theta_1) > \|\mathbf{W}_2\| \|\mathbf{x}\| \cos(\theta_2)\|$
- L-Softmax makes the classification more rigorous in order to produce a decision margin. When training, we instead require

$$\| \mathbf{W}_1 \| \| \mathbf{x} \| \cos(m\theta_1) > \| \mathbf{W}_2 \| \| \mathbf{x} \| \cos(\theta_2)$$
  $(0 \le \theta_1 \le \frac{\pi}{m})$  where  $m$  is a positive integer.

The following inequality holds:

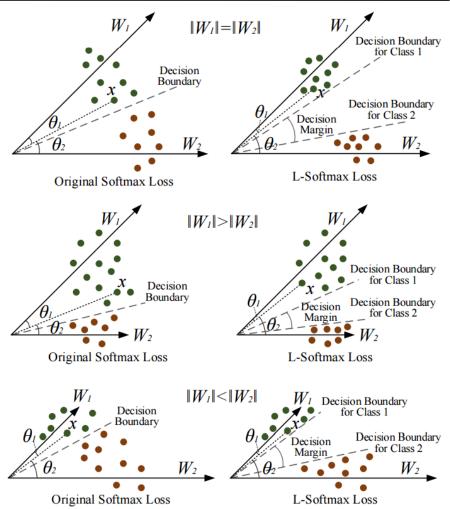
```
Margin comes here! ">>" when m>1 \|\mathbf{W}_1\| \|\mathbf{x}\| \cos(\theta_1) \|\mathbf{W}_1\| \|\mathbf{x}\| \cos(m\theta_1) > \|\mathbf{W}_2\| \|\mathbf{x}\| \cos(\theta_2).
```

 $\blacktriangleright$  The new classification criteria is a stronger requirement to correctly classify x, producing a more rigorous decision boundary for class-1.

# **Geometric Interpretation**



- We use binary classification as an example.
- ightharpoonup We consider all three scenarios in which  $\|m{W}_1\| = \|m{W}_2\|, \|m{W}_1\| > \|m{W}_2\|$  and  $\|m{W}_1\| < \|m{W}_2\|$ .
- L-Softmax loss always encourages an angular decision margin between classes.



## **L-Softmax Loss**

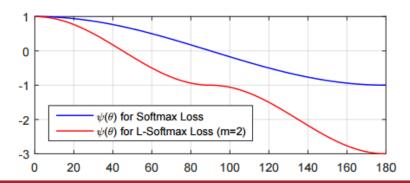


Following the notation in the original softmax loss, the L-Softmax loss is defined as

$$L_i = -\log\left(\frac{e^{\|\boldsymbol{W}_{y_i}\|\|\boldsymbol{x}_i\|\psi(\boldsymbol{\theta}_{y_i})}}{e^{\|\boldsymbol{W}_{y_i}\|\|\boldsymbol{x}_i\|\psi(\boldsymbol{\theta}_{y_i})} + \sum_{j \neq y_i} e^{\|\boldsymbol{W}_{j}\|\|\boldsymbol{x}_i\|\cos(\boldsymbol{\theta}_j)}}\right)$$

where 
$$\psi(\theta) = (-1)^k \cos(m\theta) - 2k$$
,  $\theta \in \left[\frac{k\pi}{m}, \frac{(k+1)\pi}{m}\right]$ .

 $\triangleright$  The parameter m controls the learning difficulty of the L-Softmax loss. A larger m defines a more difficult learning objective.



# **Optimization**



ightharpoonup Transform  $\cos(m\theta)$  into combinations of  $\cos(\theta)$ :

$$\cos(m\theta_{y_i}) = C_m^0 \cos^m(\theta_{y_i}) - C_m^2 \cos^{m-2}(\theta_{y_i})(1 - \cos^2(\theta_{y_i}))$$
$$+ C_m^4 \cos^{m-4}(\theta_{y_{y_i}})(1 - \cos^2(\theta_{y_{y_i}}))^2 + \cdots$$
$$(-1)^n C_m^{2n} \cos^{m-2n}(\theta_{y_{y_i}})(1 - \cos^2(\theta_{y_i}))^n + \cdots$$

- ightharpoonup Represent  $\cos(\theta)$  as  $\frac{oldsymbol{W}_j^Toldsymbol{x}_i}{\|oldsymbol{W}_j\|\|oldsymbol{x}_i\|}$
- > In practice, we seek to minimize:

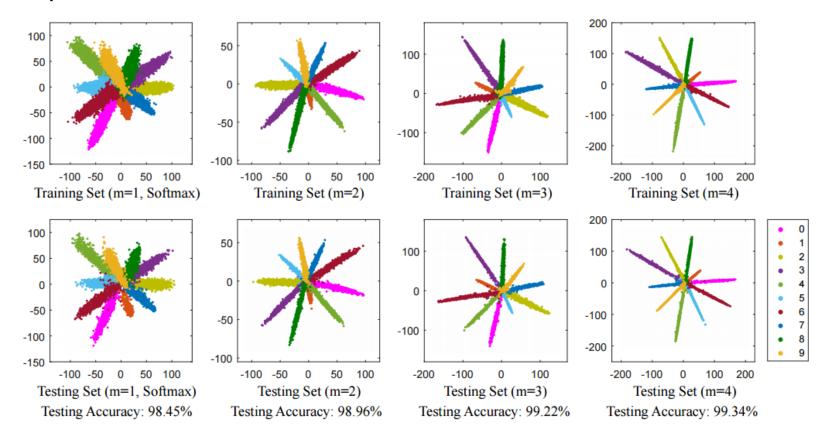
$$f_{y_i} = \frac{\lambda \|\mathbf{W}_{y_i}\| \|\mathbf{x}_i\| \cos(\theta_{y_i}) + \|\mathbf{W}_{y_i}\| \|\mathbf{x}_i\| \psi(\theta_{y_i})}{1+\lambda}$$

> Start with large λ and gradually reduce to a very small value.

# A Toy Example



A toy example on MNIST. CNN features visualized by setting the output dimension as 2.







We use standard CNN architecture and replace the softmax loss with the proposed L-Softmax loss.

| Layer           | MNIST (for Fig. 2)      | MNIST                       | CIFAR10/CIFAR10+             | CIFAR100                     | LFW                          |
|-----------------|-------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|
| Conv0.x         | N/A                     | [3×3, 64]×1                 | $[3 \times 3, 64] \times 1$  | $[3 \times 3, 96] \times 1$  | [3×3, 64]×1, Stride 2        |
| Conv1.x         | [5×5, 32]×2, Padding 2  | [3×3, 64]×3                 | $[3 \times 3, 64] \times 4$  | $[3 \times 3, 96] \times 4$  | [3×3, 64]×4                  |
| Pool1           | 2×2 Max, Stride 2       |                             |                              |                              |                              |
| Conv2.x         | [5×5, 64]×2, Padding 2  | $[3 \times 3, 64] \times 3$ | $[3 \times 3, 96] \times 4$  | $[3 \times 3, 192] \times 4$ | [3×3, 256]×4                 |
| Pool2           | 2×2 Max, Stride 2       |                             |                              |                              |                              |
| Conv3.x         | [5×5, 128]×2, Padding 2 | $[3 \times 3, 64] \times 3$ | $[3 \times 3, 128] \times 4$ | $[3 \times 3, 384] \times 4$ | $[3 \times 3, 256] \times 4$ |
| Pool3           | 2×2 Max, Stride 2       |                             |                              |                              |                              |
| Conv4.x         | N/A                     | N/A                         | N/A                          | N/A                          | $[3 \times 3, 256] \times 4$ |
| Fully Connected | 2                       | 256                         | 256                          | 512                          | 512                          |

Table 1. Our CNN architectures for different benchmark datasets. Conv1.x, Conv2.x and Conv3.x denote convolution units that may contain multiple convolution layers. E.g.,  $[3\times3, 64]\times4$  denotes 4 cascaded convolution layers with 64 filters of size  $3\times3$ .

- We adopt conventional setup in all datasets.
- We compare our L-Softmax loss with the same CNN architecture with standard softmax loss and other state-of-the-art methods.





#### > MNIST dataset

| Method                           | Error Rate |
|----------------------------------|------------|
| CNN (Jarrett et al., 2009)       | 0.53       |
| DropConnect (Wan et al., 2013)   | 0.57       |
| FitNet (Romero et al., 2015)     | 0.51       |
| NiN (Lin et al., 2014)           | 0.47       |
| Maxout (Goodfellow et al., 2013) | 0.45       |
| DSN (Lee et al., 2015)           | 0.39       |
| R-CNN (Liang & Hu, 2015)         | 0.31       |
| GenPool (Lee et al., 2016)       | 0.31       |
| Hinge Loss                       | 0.47       |
| Softmax                          | 0.40       |
| L-Softmax (m=2)                  | 0.32       |
| L-Softmax (m=3)                  | 0.31       |
| L-Softmax (m=4)                  | 0.31       |

Table 2. Recognition error rate (%) on MNIST dataset.

We can observe that CNN with L-Softmax loss achieves better results with larger m.



#### CIFAR10, CIFAR10+, CIFAR100

| Method                              | CIFAR10 | CIFAR10+ |
|-------------------------------------|---------|----------|
| DropConnect (Wan et al., 2013)      | 9.41    | 9.32     |
| FitNet (Romero et al., 2015)        | N/A     | 8.39     |
| NiN + LA units (Lin et al., 2014)   | 10.47   | 8.81     |
| Maxout (Goodfellow et al., 2013)    | 11.68   | 9.38     |
| DSN (Lee et al., 2015)              | 9.69    | 7.97     |
| All-CNN (Springenberg et al., 2015) | 9.08    | 7.25     |
| R-CNN (Liang & Hu, 2015)            | 8.69    | 7.09     |
| ResNet (He et al., 2015a)           | N/A     | 6.43     |
| GenPool (Lee et al., 2016)          | 7.62    | 6.05     |
| Hinge Loss                          | 9.91    | 6.96     |
| Softmax                             | 9.05    | 6.50     |
| L-Softmax (m=2)                     | 7.73    | 6.01     |
| L-Softmax (m=3)                     | 7.66    | 5.94     |
| L-Softmax (m=4)                     | 7.58    | 5.92     |

| Method                              | Error Rate |
|-------------------------------------|------------|
| FitNet (Romero et al., 2015)        | 35.04      |
| NiN (Lin et al., 2014)              | 35.68      |
| Maxout (Goodfellow et al., 2013)    | 38.57      |
| DSN (Lee et al., 2015)              | 34.57      |
| dasNet (Stollenga et al., 2014)     | 33.78      |
| All-CNN (Springenberg et al., 2015) | 33.71      |
| R-CNN (Liang & Hu, 2015)            | 31.75      |
| GenPool (Lee et al., 2016)          | 32.37      |
| Hinge Loss                          | 32.90      |
| Softmax                             | 32.74      |
| L-Softmax (m=2)                     | 29.95      |
| L-Softmax (m=3)                     | 29.87      |
| L-Softmax (m=4)                     | 29.53      |

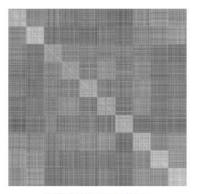
Table 3. Recognition error rate (%) on CIFAR10 dataset. CI-FAR10 denotes the performance without data augmentation, while CIFAR10+ is with data augmentation.

Table 4. Recognition error rate (%) on CIFAR100 dataset.

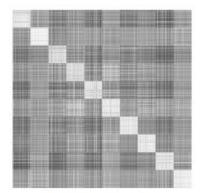
CNN with L-Softmax loss achieves the state-of-the-art performance on CIFAR 10, CIFAR10+ and CIFAR100.



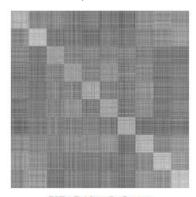
#### > CIFAR10, CIFAR10+, CIFAR100



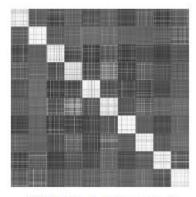
CIFAR10 Softmax



CIFAR10 L-Softmax(m=4)



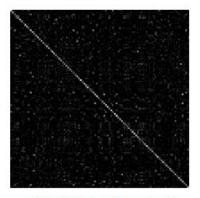
CIFAR10+ Softmax



CIFAR10+ L-Softmax(m=4)



CIFAR100 Softmax



CIFAR100 L-Softmax(m=4)

We observe that the deeply learned features through L-Softmax are more discriminative.

Figure 5. Confusion matrix on CIFAR10, CIFAR10+ and CIFAR100.



- > CIFAR10, CIFAR10+, CIFAR100
- Classification error vs. iteration. Left: training. Right: testing.

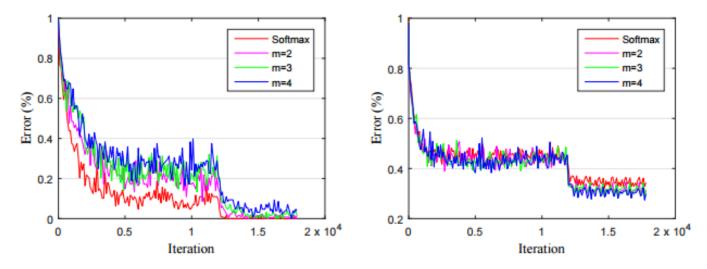


Figure 6. Error vs. iteration with different value of m on CIFAR100. The left shows training error and the right shows testing error.

- > From the above figures, we see that L-Softmax is far from overfitting.
- ➤ L-Softmax loss does not achieve the state-of-the-art performance by overfitting the dataset.



- > CIFAR10, CIFAR10+, CIFAR100
- Classification error vs. iteration. Left: training. Right: testing.

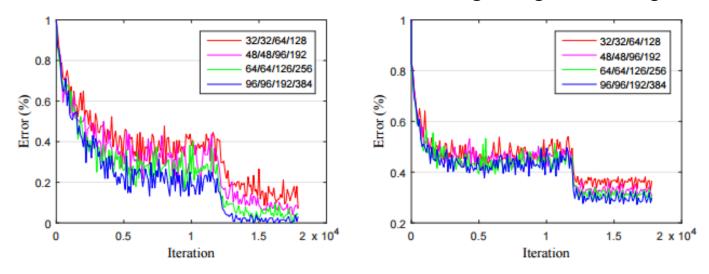


Figure 7. Error vs. iteration (m=4) with different number of filters on CIFAR100. The left (right) presents training (testing) error.

More filters could also improve the performance, showing that our L-Softmax still have great potential.





- > LFW face verification
- We train our CNN model on publicly available WebFace face dataset and test on LFW dataset.

| Method                         | Outside Data | Accuracy |
|--------------------------------|--------------|----------|
| FaceNet (Schroff et al., 2015) | 200M*        | 99.65    |
| Deep FR (Parkhi et al., 2015)  | 2.6M         | 98.95    |
| DeepID2+ (Sun et al., 2015)    | 300K*        | 98.70    |
| (Yi et al., 2014)              | WebFace      | 97.73    |
| (Ding & Tao, 2015)             | WebFace      | 98.43    |
| Softmax                        | WebFace      | 96.53    |
| Softmax + Contrastive          | WebFace      | 97.31    |
| L-Softmax (m=2)                | WebFace      | 97.81    |
| L-Softmax (m=3)                | WebFace      | 98.27    |
| L-Softmax (m=4)                | WebFace      | 98.71    |

Table 5. Verification performance (%) on LFW dataset. \* denotes the outside data is private (not publicly available).

We achieve the best result with WebFace outside training dataset.

#### **Conclusions**



- L-Softmax loss has very clear intuition and simple formulation.
- ➤ L-Softmax loss can be easily used as a drop-in replacement for standard loss, as well as used in tandem with other performance-boosting approaches and modules.
- L-Softmax loss can be easily optimized using typical stochastic gradient descent.
- ➤ L-Softmax achieves state-of-the-art classification performance and prevents the CNNs from overfitting, since it provides a more difficult learning objective.
- ➤ L-Softmax makes better use of the feature learning ability brought by deeper structures.

