

Iterative Machine Teaching

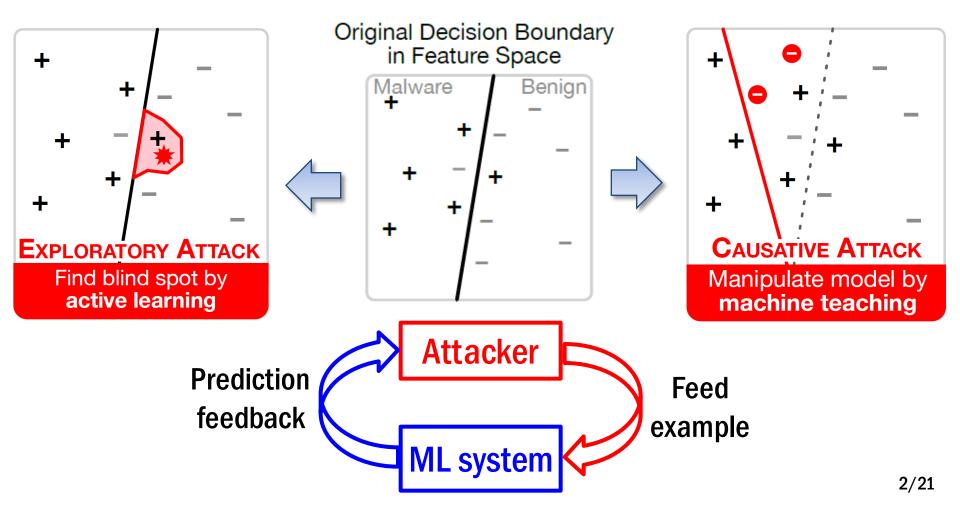
Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Yu Chen, Linda B. Smith, Jim Rehg, Le Song

College of Computing
Georgia Institute of Technology

Attack with data

An ML defender system is driven by the data fed to it

- Exploratory attack: probe the decision boundary with data
- Causative attack: manipulate the decision boundary with data



Causative attack ⇔ machine teaching

Machine teaching: the teacher designs labeled data intelligently, such that the learner can learns the teacher model with these data

Causative attack: the attacker generate malicious data, such that the ML system are steered towards a particular model with these data

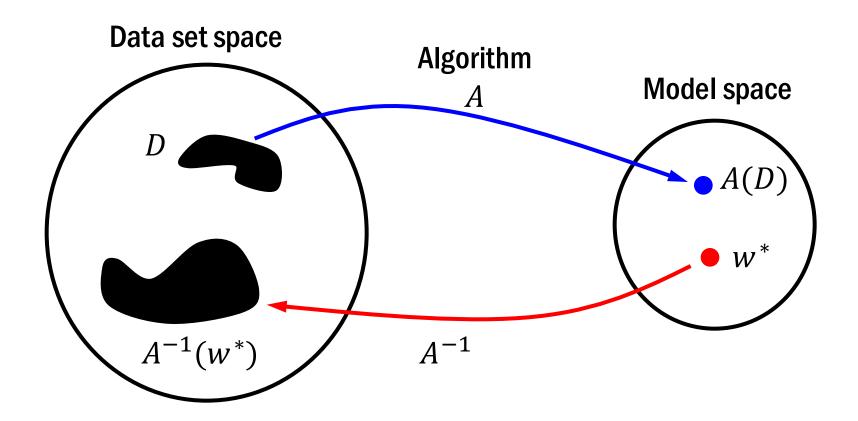
Evaluation of robustness

- **Teaching dimension**: number of examples to steer to ϵ error
- Key results: potentially exponentially smaller sample size
- Implication: need new algorithms with large teaching dimension

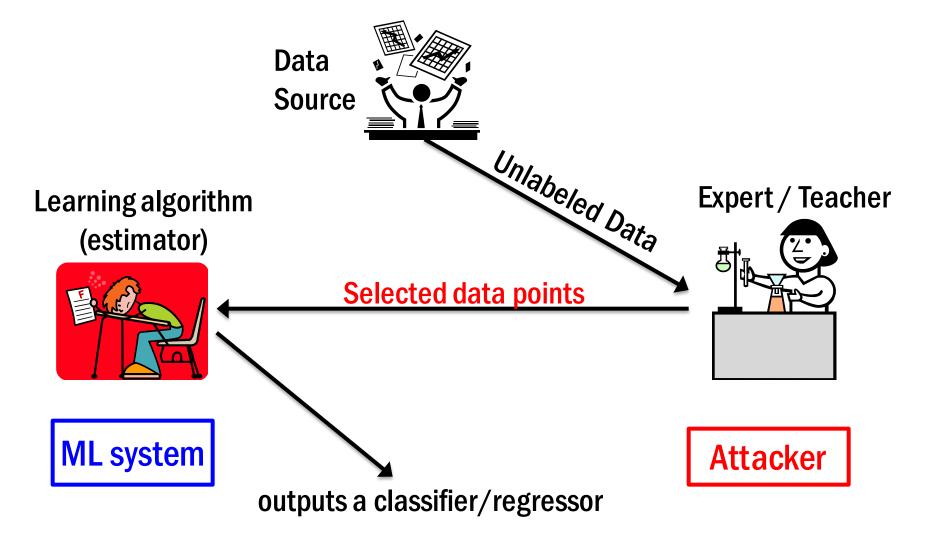
Machine teaching

An inverse problem to machine learning

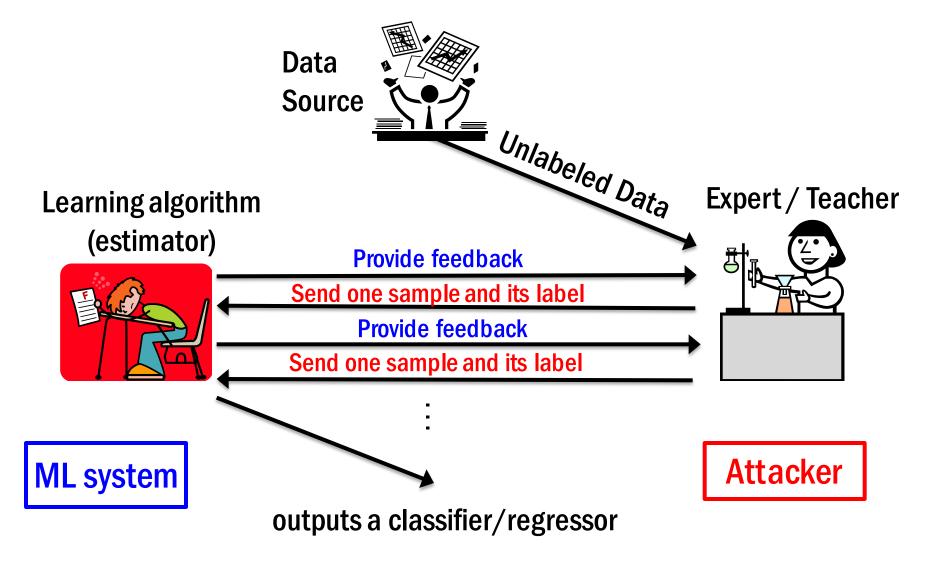
- ullet Teacher has a target model $oldsymbol{w}^*$, and knows learner's algorithm A
- Find the smallest data set (teaching dimension) to steer A



Batch machine teaching



Iterative machine teaching



Teaching speed is limited by the student

- Student ⇔ An iterative algorithm for learning a model parameter
- Depending on the type of student algorithms
 - The best example to teach will be different
 - The teaching speed (dimension) will be different

Stochastic gradient descent:

Initialize w^0

For
$$t = 1 \dots T$$

obtain (x, y) from teacher

obtain
$$(x, y)$$
 from teacher
$$w^t = w^{t-1} - \eta_t \frac{\partial \ell(\langle w^{t-1}, x \rangle, y)}{\partial w^{t-1}}$$

loss function $\ell(\cdot,\cdot)$ feature representation xlinear model $\langle w, x \rangle$ learning rate η_t **Goal: teach** w^*

Teaching dimension? Best examples?

Intuition from SGD updates

Consider the t+1-step SGD solution quality comparing to optimal model

$$\|w^{t+1} - w^*\|_2^2 = \left\|w^t - \eta_t \frac{\partial \ell(\langle w^t, x \rangle, y)}{\partial w^t} - w^*\right\|_2^2$$

$$\min_{x, y \in \mathcal{X} \times \mathcal{Y}} \left\|w^t - \eta_t \frac{\partial \ell(\langle w^t, x \rangle, y)}{\partial w^t} - w^*\right\|_2^2$$

- SGD randomly selects x, y, which may hurt the performance.
- Select optimal samples $x, y \in \mathcal{X} \times \mathcal{Y}$ will lead to minimizing distance to optimal solution, therefore, accelerating learning speed.
- Extremely, in a rich candidate training set, we can select the optimal sample x, y which reduces $||w^{t+1} w^*||_2^2$ to 0, i.e., learning with one sample.

Intuition from SGD updates

$$||w^{t+1} - w^*||_2^2 = \left| w^t - \eta_t \frac{\partial \ell(\langle w^t, x \rangle, y)}{\partial w^t} - w^* \right|_2^2$$

$$= ||w^t - w^*||_2^2 + \eta_t^2 \underbrace{\left| \frac{\partial \ell(\langle w^t, x \rangle, y)}{\partial w^t} \right|_2^2 - 2\eta_t \underbrace{\left| w^t - w^*, \frac{\partial \ell(\langle w^t, x \rangle, y)}{\partial w^t} \right|_2^2}_{T_1(x, y | w^t)}$$

- $T_1(x, y|w^t)$: characterize the difficulty of an example
 - For linear regression, $T_1(x, y|w^t) = ||\langle w^t, x \rangle y||_2^2$
 - For logistic regression, $T_1(x, y|w^t) = \left\| \frac{1}{1 + \exp(y\langle w^t, x \rangle)} \right\|_2^2$
- $T_2(x, y|w^t)$: characterize the usefulness of an example
 - Correlation between $w^t w^*$ and gradient caused by x, y

Omniscient iterative teaching algorithm

$$\min_{x,y \in \mathcal{X} \times \mathcal{Y}} \| w^{t+1} - w^* \|_2^2 \Longrightarrow \min_{x,y \in \mathcal{X} \times \mathcal{Y}} \eta_t^2 T_1(x,y|w^t) - 2\eta_t T_2(x,y|w^t)$$

• The omniscient teacher knows the student's model, w, in each iteration

Student side:

For t = 1, ..., T

Receive training samples from teacher Update the model by

$$w^{t} = w^{t-1} - \eta_{t} \frac{\partial \ell(\langle w^{t-1}, x \rangle, y)}{\partial w^{t-1}}$$

Teacher side:

Set up $X \times Y$ according to the learning setting

For
$$t = 1, ..., T$$

Check student's w^t

Select the training sample from $X \times Y$ by

$$\min_{x,y \in X \times Y} \eta_t^2 T_1(x,y|w^t) - 2\eta_t T_2(x,y|w^t)$$

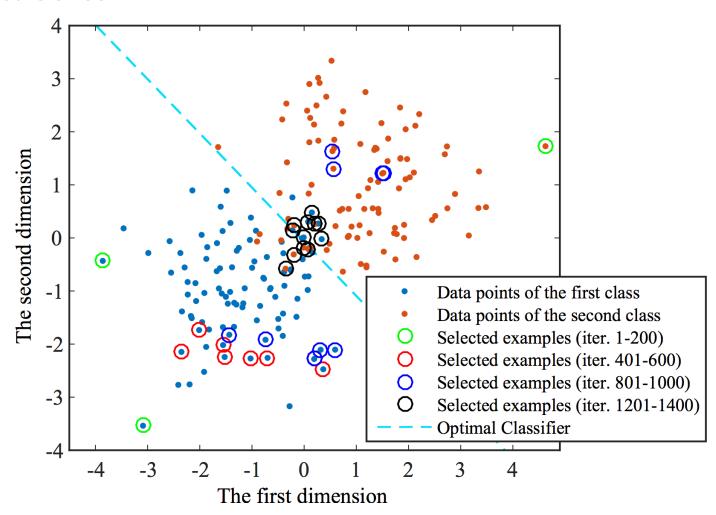
Send the selected x, y to student

Trade-off between sample difficulty and sample usefulness

- ullet Consider fixed learning rate $\eta_{\,t}$
 - $\frac{\partial \ell(\langle w^t, x \rangle, y)}{\partial w^t}$ is large at the beginning stage $\implies T_1(x, y|w^t)$ is dominated
 - $\frac{\partial \ell(\langle w^t, x \rangle, y)}{\partial w^t}$ is small when w^t approaches $w^* \Longrightarrow T_2(x, y|w^t)$ is dominated
- Pick easy example first and difficult later, gradually focusing on difficult examples.
 - Connected to curriculum learning and boosting.

Toy Experiments

- Teaching Linear Learner with Gaussian Training data
- Visualization of selected samples: easy ones first and gradually difficult ones.



Qualitatively result

Define the Teaching Volume as

$$TV(w) = \max_{x,y \in \mathcal{X} \times \mathcal{Y}} -\eta_t^2 T_1(x,y|w) + 2\eta_t T_2(x,y|w)$$

Teaching monotonicity:

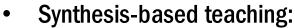
$$||w_1 - w^*||_2^2 - TV(w_1) \le ||w_2 - w^*||_2^2 - TV(w_2)$$

for any w_1 , w_2 satisfying $||w_1 - w^*||_2^2 \le ||w_2 - w^*||_2^2$

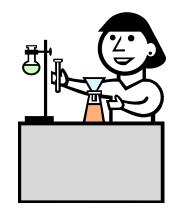
 Under the teaching monotonicity condition, the teacher algorithm can always converge not slower than teacher selecting random examples

Three ways of generating teaching examples

Regression: $\mathcal{Y} = \mathbb{R}$, Classification $\mathcal{Y} = \{-1, 1\}$



$$\mathcal{X} = \{x \in \mathbb{R}^d, ||x|| \le R\}$$



Combination-based teaching:

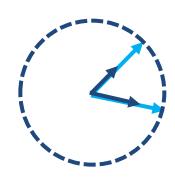
$$\mathcal{X} = \{x| \ \|x\| \leq R, x = \sum_{i=1}^m \alpha_i x_i, \, x_i \in \mathcal{D}\},$$
 with $\mathcal{D} = \{x_i\}_{i=1}^m$

Rescaled Pool-based teaching:

$$\mathcal{X} = \{x| \ \|x\| \leq R, x = \gamma x_i, \ x_i \in \mathcal{D}\},$$
 with $\mathcal{D} = \{x_i\}_{i=1}^m$

Synthesis

Combination



Rescaled Pool

Theoretical results

- Exponential speedup learning procedure
 - Under some mild conditions, the omniscient teacher can select samples from synthesis-based, combination-based, and rescaled pool-based training set to accelerate the student learning with SGD to exponential rate under commonly used loss functions.

Exponential rate: the student can learn an ϵ -approximation of w^* with $\mathcal{O}\left(C\log\frac{1}{\epsilon}\right)$ samples.

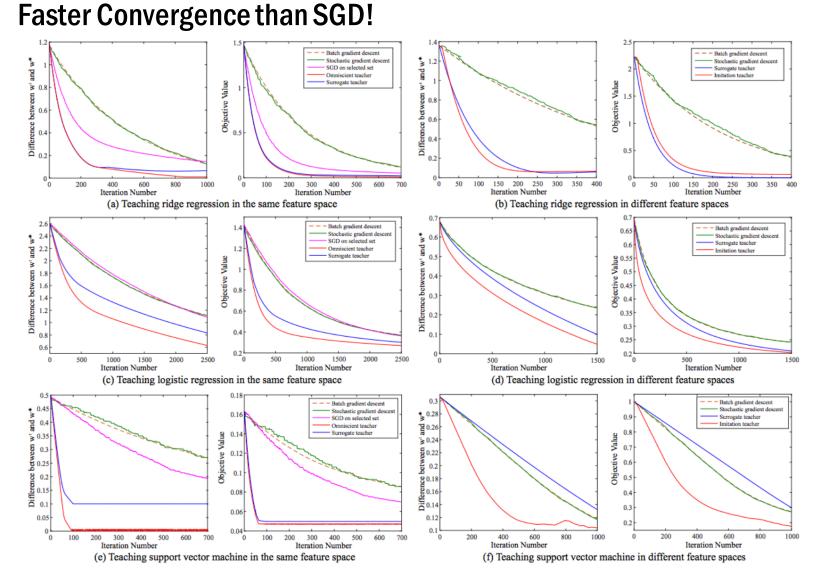
Different training sets will affect the constant *C* in the learning rate.

Commonly used loss functions for regression: square loss, absolute loss Commonly used loss functions for classification: hinge loss, logistic loss

More generally, the Lipschitz smooth and strongly convex loss function are exponential teachable

Experiments

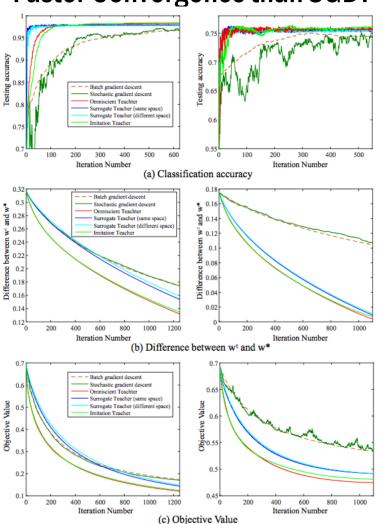
Teaching Linear Learner with Gaussian Training data



Experiments

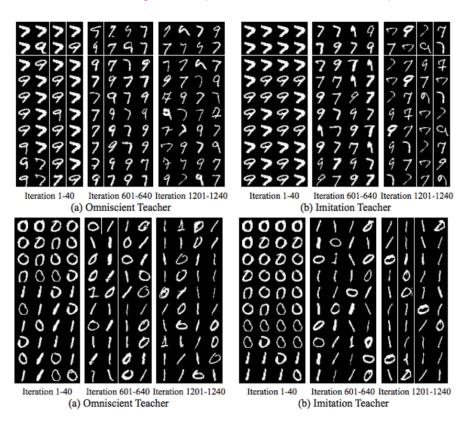
Teaching Linear Learner in MNIST dataset

Faster Convergence than SGD!



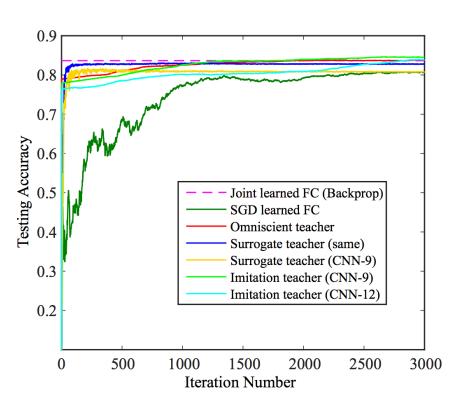
Visualization of selected samples

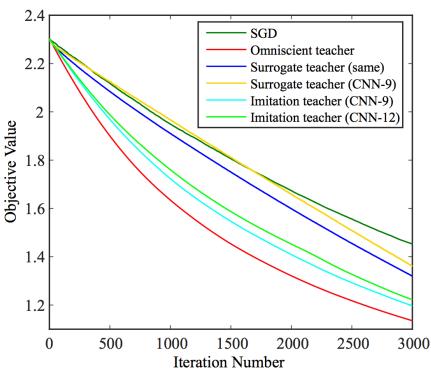
From easy examples to difficult examples



Experiments

Teaching Linear Learner in CIFAR-10 dataset
 Consistently faster Convergence than SGD!





Object learning experiment on children's ego-centric visual data

Natural learning order of a child

Object learning experiment on children's ego-centric visual data

SGD learning order

Object learning experiment on children's ego-centric visual data

Iterative teaching order

Similar to natural learning order of children!