

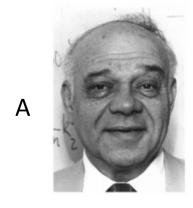
Deep Hyperspherical Learning

Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song

Georgia Institute of Technology

Motivation

2D Fourier Transform for images



The magnitude of A + The phase of B = $\frac{1}{2}$

The magnitude of B + The phase of A =

• Phase contains the crucial discriminative information!

SphereNet: a network that focuses on the angular (phase) information

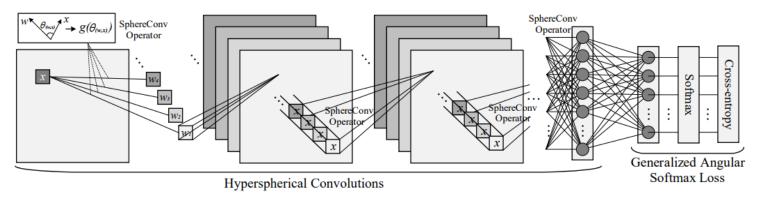
Hyperspherical Convolutional (SphereConv) Operator:

$$\mathcal{F}_s(\boldsymbol{w}, \boldsymbol{x}) = g(\theta_{(\boldsymbol{w}, \boldsymbol{x})}) + b_{\mathcal{F}_s}$$

Where $\theta_{(w,x)}$ is the angle between the kernel parameter w and the local patch x. A simple example is cosine SphereConv:

$$g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = \cos(\theta_{(\boldsymbol{w},\boldsymbol{x})})$$

 We use this SphereConvoperator to replace the original inner product based convolutional operator in the CNNs, and propose the SphereNet. (SphereNet comes from that angle can be viewed as the geodesic distance on a unit hypersphere)



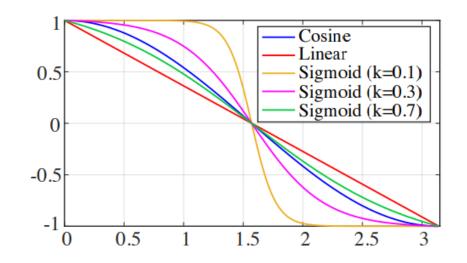
Four SphereConv operators

linear SphereConv

$$g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = a\theta_{(\boldsymbol{w},\boldsymbol{x})} + b$$

cosine SphereConv

$$g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = \cos(\theta_{(\boldsymbol{w},\boldsymbol{x})})$$



sigmoid SphereConv

$$g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = \frac{1 + \exp(-\frac{\pi}{2k})}{1 - \exp(-\frac{\pi}{2k})} \cdot \frac{1 - \exp\left(\frac{\theta_{(\boldsymbol{w},\boldsymbol{x})}}{k} - \frac{\pi}{2k}\right)}{1 + \exp\left(\frac{\theta_{(\boldsymbol{w},\boldsymbol{x})}}{k} - \frac{\pi}{2k}\right)}$$

Learnable SphereConv

$$g(\theta_{(\boldsymbol{w},\boldsymbol{x})}) = \frac{1 + \exp(-\frac{\pi}{2k})}{1 - \exp(-\frac{\pi}{2k})} \cdot \frac{1 - \exp\left(\frac{\theta_{(\boldsymbol{w},\boldsymbol{x})}}{k} - \frac{\pi}{2k}\right)}{1 + \exp\left(\frac{\theta_{(\boldsymbol{w},\boldsymbol{x})}}{k} - \frac{\pi}{2k}\right)}$$

with the parameter k to be learned in back-prop

Theoretical Insights

• Suppose the observation is $F = U^*V^{*\top}$ (ignore the bias), where $U^* \in \mathbb{R}^{n \times k}$ is the weight, $V^* \in \mathbb{R}^{m \times k}$ is the input that embeds weights from previous layers.

Scaling issue of neural networks:

- Consider the objective: $\min_{\boldsymbol{U} \in \mathbb{R}^{n \times k}, \boldsymbol{V} \in \mathbb{R}^{m \times k}} \mathcal{G}(\boldsymbol{U}, \boldsymbol{V}) = \frac{1}{2} \| \boldsymbol{F} \boldsymbol{U} \boldsymbol{V}^{\top} \|_{\mathrm{F}}^{2}$
- Lemma1: Consider a pair of global optimal points U,V satisfying $F = UV^{\top}$ and $\mathrm{Tr}(V^{\top}V \otimes I_n) \leq \mathrm{Tr}(U^{\top}U \otimes I_m)$. For any real c > 1, let $\widetilde{U} = cU$ and $\widetilde{V} = V/c$, then we have $\kappa(\nabla^2 \mathcal{G}(\widetilde{U},\widetilde{V})) = \Omega(c^2\kappa(\nabla^2 \mathcal{G}(U,V)))$, where $\kappa = \frac{\lambda_{\max}}{\lambda_{\min}}$ is the restricted condition number with λ_{\max} being the largest and λ_{\min} being the smallest nonzero eigenvalues.

Insensitiveness to Scaling for SphereConv:

Consider our proposed cosine SphereConv operator, an equivalent problem is:

$$\min_{\boldsymbol{U} \in \mathbb{R}^{n \times k}, \boldsymbol{V} \in \mathbb{R}^{m \times k}} \mathcal{G}_{S}(\boldsymbol{U}, \boldsymbol{V}) = \frac{1}{2} \|\boldsymbol{F} - \boldsymbol{D}_{\boldsymbol{U}} \boldsymbol{U} \boldsymbol{V}^{\top} \boldsymbol{D}_{\boldsymbol{V}} \|_{F}^{2}$$
 where $\boldsymbol{D}_{U} = \operatorname{diag} \left(\frac{1}{\|\boldsymbol{U}_{1,:}\|_{2}}, \dots, \frac{1}{\|\boldsymbol{U}_{n,:}\|_{2}} \right) \in \mathbb{R}^{n \times n}$ and $\boldsymbol{D}_{V} = \operatorname{diag} \left(\frac{1}{\|\boldsymbol{V}_{1,:}\|_{2}}, \dots, \frac{1}{\|\boldsymbol{V}_{m,:}\|_{2}} \right) \in \mathbb{R}^{m \times m}$ are diagonal matrices.

• Lemma2: For any real c>1, let $\widetilde{\boldsymbol{U}}=c\boldsymbol{U}$ and $\widetilde{\boldsymbol{V}}=\boldsymbol{V}/c$, then we have $\lambda_i(\nabla^2\mathcal{G}_S(\widetilde{\boldsymbol{U}},\widetilde{\boldsymbol{V}}))=\lambda_i(\nabla^2\mathcal{G}_S(\boldsymbol{U},\boldsymbol{V}))$ for all $i\in[(n+m)k]=\{1,2,\ldots,(n+m)k\}$ and $\kappa(\nabla^2\mathcal{G}(\widetilde{\boldsymbol{U}},\widetilde{\boldsymbol{V}}))=\kappa(\nabla^2\mathcal{G}(\widetilde{\boldsymbol{U}},\boldsymbol{V}))$. , where κ is defined as in Lemma1.

- Regular Neural Nets: scales as $\Omega(c^2)$
- SphereConv: <u>insensitive</u> to scaling

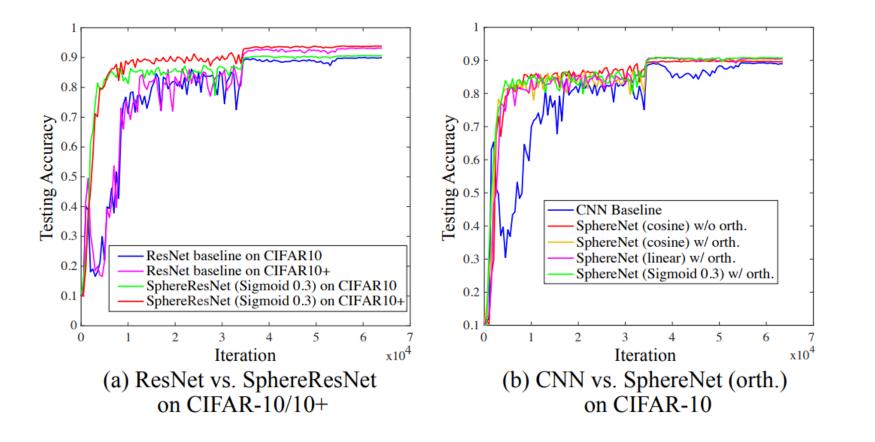
More on SphereNets

- SphereConv can also be used to the fully connected layers, recurrent layers, etc.
- SphereConv can also be viewed as a normalization method that could avoid covariate shift (due to the bounded outputs), and can work simultaneously with Batch Normalization.
- We also design angular loss functions for SphereConv, i.e., generalized angular softmax (GA-Softmax) loss

$$L_i = -\log\left(\frac{e^{\|\boldsymbol{x}_i\|g(m\theta_{y_i,i})}}{e^{\|\boldsymbol{x}_i\|g(m\theta_{y_i,i})} + \sum_{j \neq y_i} e^{\|\boldsymbol{x}_i\|g(\theta_{j,i})}}\right)$$

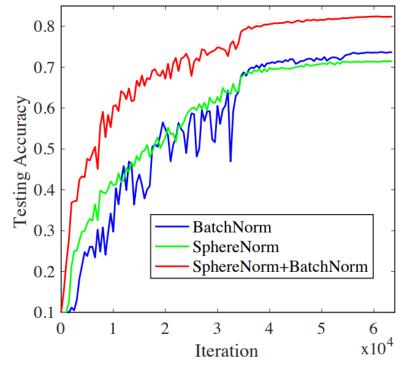
Experiments

 Faster Convergence and better accuracy on CIFAR-10, CIFAR-100



Experiments

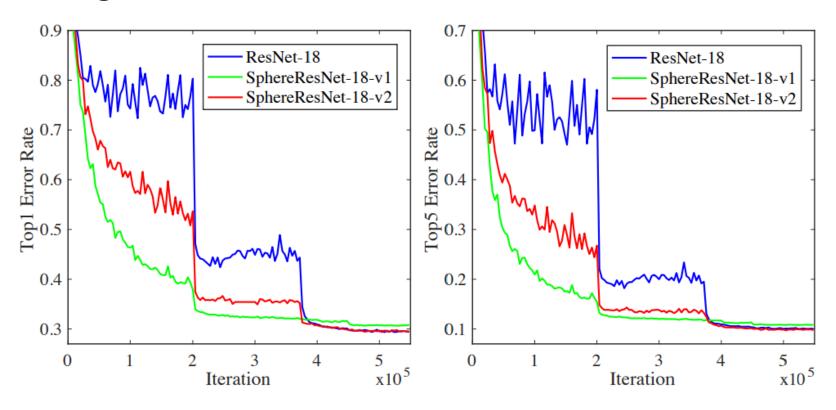
- SphereConv can be used as a new normalization method (SphereNorm), comparable to Batch Normalization. But they can be used simultaneously.
- The advantages of SphereNorm are very significant, especially with small mini-batch size.



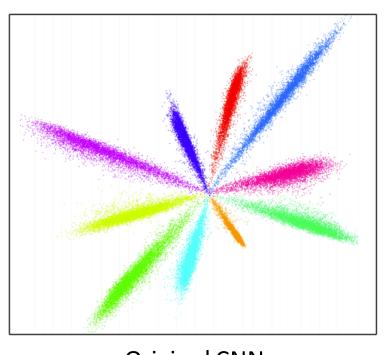
Mini-batch size =4!

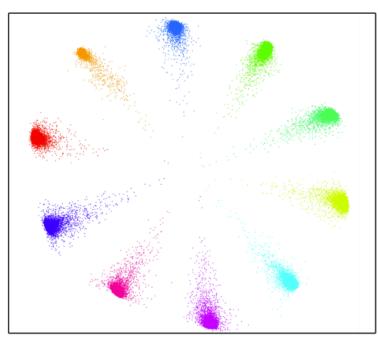
Experiments

 Faster Convergence and comparable accuracy on Imagenet-2012



Visualization on MNIST





Original CNN

SphereNet

More experiments

• Using the SphereConv only to the last fully connected layer gives impressive results on face recognition.

Method	protocol	Rank1 Acc.	Ver.
NTechLAB - facenx large	Large	73.300	85.081
Vocord - DeepVo1	Large	75.127	67.318
Deepsense - Large	Large	74.799	87.764
Shanghai Tech	Large	74.049	86.369
Google - FaceNet v8	Large	70.496	86.473
Beijing FaceAll_Norm_1600	Large	64.804	67.118
Beijing FaceAll_1600	Large	63.977	63.960
Deepsense - Small	Small	70.983	82.851
SIAT_MMLAB	Small	65.233	76.720
Barebones FR - cnn	Small	59.363	59.036
NTechLAB - facenx_small	Small	58.218	66.366
3DiVi Company - tdvm6	Small	33.705	36.927
Softmax Loss	Small	54.855	65.925
Softmax+Contrastive Loss [26]	Small	65.219	78.865
Triplet Loss [22]	Small	64.797	78.322
L-Softmax Loss [16]	Small	67.128	80.423
Softmax+Center Loss [34]	Small	65.494	80.146
SphereFace (single model)	Small	72.729	85.561
SphereFace (3-patch ensemble)	Small	75.766	89.142

The End

- The code will be made available at https://github.com/wy1iu/SphereNet
- The code of SphereFace is available at https://github.com/wy1iu/sphereface