

Background

- Convolution operator contains two components:
 - Learnable template (Kernel)
 - Similarity measure (inner product)
- Learning (modifying) the shape of kernel:
- Dilated (atrous) convolution
- Deformable convolution, Active convolution
- Learning (modifying) the similarity measure:
- Hyperspherical convolution
- Decoupled convolution
- Our work aims to generalize the current convolution operator by jointly learning both kernel shape and similarity measure.

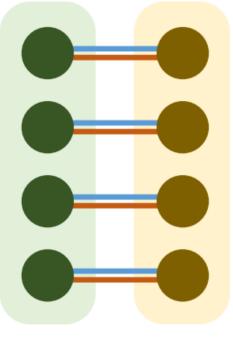
Motivation

- Hand-designed inner-product based convolution is unlikely to be optimal for every task.
- Optimizing an underdetermined quadratic objective over a matrix W with gradient descent on a factorization of this matrix leads to an implicit regularization for the solution

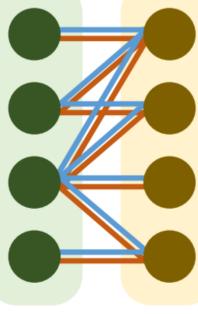
Main Contribution

- Neural similarity generalizes the inner product via bilinear similarity.
- **Neural similarity network** stacks convolution layers with neural similarity.
- **Static** and **dynamic** learning strategies for the neural similarity.
- Significant performance gain in visual recognition and few-shot learning.

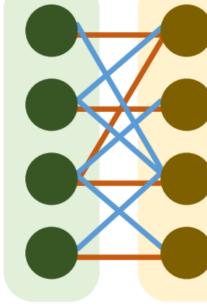
High-level Comparison with Inner Product



Inner Product



Static Neural Similarity



laceholder

Input 2

Dynamic Neural Similarity

• A line represents a multiplication operation and a circle denotes an element in a vector. Green color denotes kernel and yellow denotes input.

Neural Similarity Learning

Weiyang Liu^{1*}, Zhen Liu^{2*}, James M. Rehg¹, Le Song¹

1. Georgia Tech 2. Mila, University of Montreal * Equal Contribution

Neural Similarity Learning

Notation:

 \tilde{W} : a convolution kernel with size $C \times H \times V$.

 $W = \{ \tilde{W}_{1...}^F, \tilde{W}_{2...}^F, \cdots, \tilde{W}_{C...}^F \} \in \mathbb{R}^{CHV}$: a flatten kernel.

X: a flatten input patch.

Generalizing convolution with bilinear similarity:

$$f_{\boldsymbol{M}}(\boldsymbol{W}, \boldsymbol{X}) = \boldsymbol{W}^{\top} \boldsymbol{M} \boldsymbol{X}$$

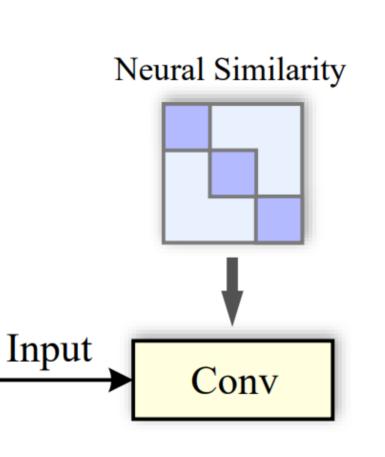
where $M \in \mathbb{R}^{CHV \times CHV}$ denotes the bilinear similarity matrix.

Constraining M to be block-diagonal:

$$f_{\boldsymbol{M}}(\boldsymbol{W}, \boldsymbol{X}) = \boldsymbol{W}^{\top} \begin{bmatrix} \boldsymbol{M}_{s} & & \\ & \ddots & \\ & & \boldsymbol{M}_{s} \end{bmatrix} \boldsymbol{X}$$

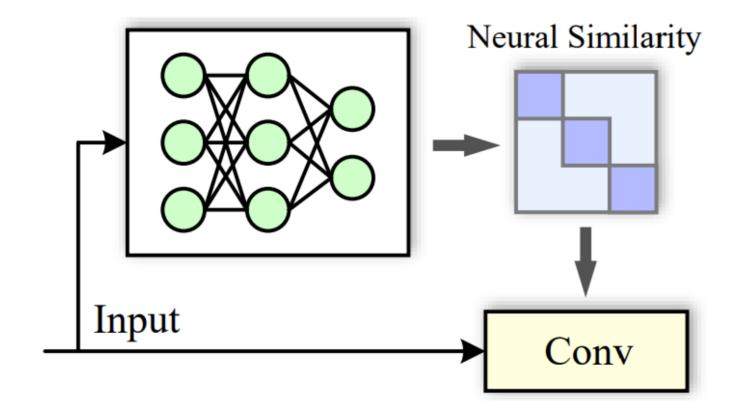
where $M = \text{diag}(M_s, \cdots, M_s)$ and M_s is of size $HV \times HV$. Note that, hyperspherical convolution becomes a special case of this bilinear formulation if M is a diagonal matrix with diagonal being $\|W\| \|X\|$.

Learning Static Neural Similarity



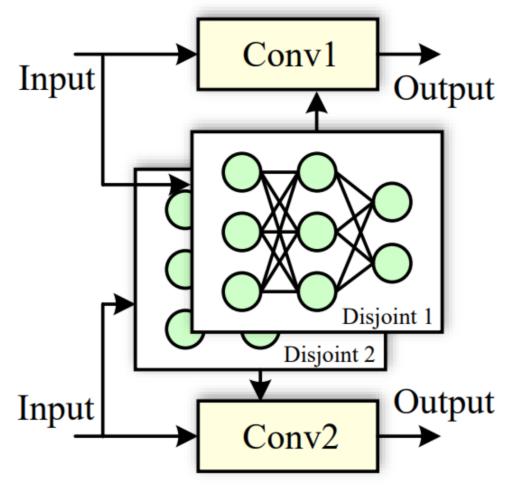
- We learn the matrix **M** jointly with the convolution kernel via backpropagation.
- Learning static neural similarity can be viewed as a factorized learning of neurons.
- Recent theories suggest that such factorization tends to give minimum nuclear norm solution.

Learning Dynamic Neural Similarity

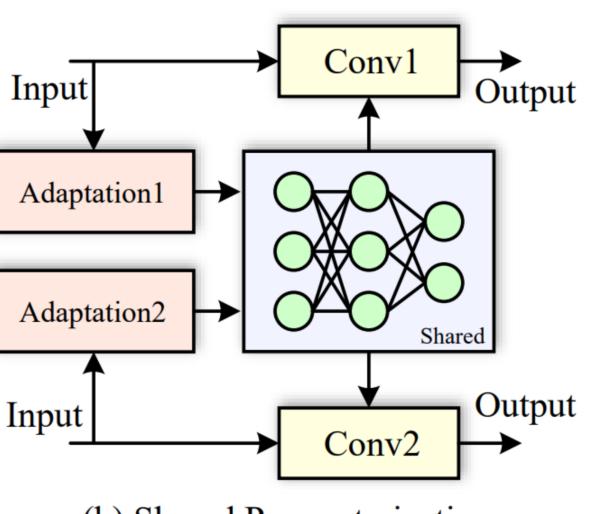


- We use a neural network to predict the neural similarity.
- Such neural similarity is dynamic in the sense that it is dependent on the input and dynamically determines the neural similarity during inference.
- It is equivalent to a **dynamic neural network**.

Disjoint and Shared Parameterization

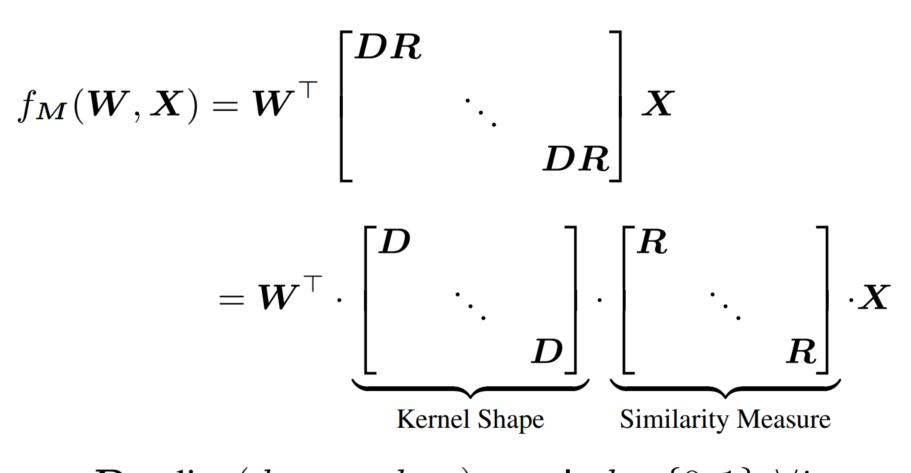


(a) Disjoint Parameterization



(b) Shared Parameterization

Learning Both Kernel Shape and Similarity



where $D = \text{diag}(d_1, \cdots, d_{HV})$ and $d_i \in \{0, 1\}, \forall i$.

Theoretical Insights

- Implicit regularization induced by NSL: NSL can be viewed as a form of matrix multiplication where the weight matrix W is factorized as $M^T W'$.
- Such factorization form not only provides more modeling and regularization flexibility, but it also introduces an **implicit regularization** (in gradient descent).
- Comparison of gradient flow:

Standard derivative

$$\dot{oldsymbol{W}}_t = \sum\nolimits_i oldsymbol{X}_i (oldsymbol{y}_i - oldsymbol{W}_t^ op oldsymbol{X}_i)^ op = \sum\nolimits_i oldsymbol{X}_i (oldsymbol{r}_t^i)^ op$$

NSL derivative

$$egin{aligned} \dot{m{W}}_t &= m{M}_t^ op \dot{m{W}}_t' + \dot{m{M}}_t^ op m{W}_t' \ &= m{M}_t^ op m{M}_t \sum_i m{X}_i (m{r}_t^i)^ op + \sum_i m{X}_i (m{r}_t^i)^ op m{W}_t'' m{W}_t' \end{aligned}$$

Connection to dynamic neural unit (DNU): an isolated DNU is given by a differential equation:

$$\dot{\boldsymbol{x}}(t) = -\alpha \boldsymbol{x}(t) + f(\boldsymbol{w}, \boldsymbol{x}(t), \boldsymbol{u}), \ \boldsymbol{y}(t) = g(\boldsymbol{x}(t))$$

 Different from DNU, dynamic NSN does not have the state feedback and self-recurrence.

Generic Image Recognition

Method	Error (%)
Baseline CNN	7.78
Dynamic NSN (Shared)	7.20
Dynamic NSN (Disjoint)	6.85

Error of different parameterization on CIFAR-100

Shared parameterization has better generalizability than disjoint parameterization.

Method	CIFAR-10	CIFAR-100
Baseline CNN	7.78	28.95
Baseline CNN++	7.29	28.70
Static NSN w/ DNS	7.15	28.35
Static NSN w/ UNS	7.38	28.11
Dynamic NSN w/ DNS	6.85	27.81
Dynamic NSN w/ UNS	6.5	28.02

Testing error on CIFAR-10 and CIFAR-100

Method	Top-1	Top-5	# params
Baseline CNN	42.72	19.11	8.90M
Baseline CNN++	42.11	18.98	9.71M
Dynamic NSN w/ DNS	40.61	18.04	9.61M

Testing error on ImageNet-2012

- NSL generally yields <u>better generalization power</u>.
- NSL has **better parameter efficiency**.
- NSL does not affect the inference speed and has the same inference speed as its CNN counterpart.

Few-shot Image Recognition

Method	Backbone	5-shot Accuracy
Finetuning Baseline	CNN-4	49.79 ± 0.79
Nearest Neightbor Baseline	CNN-4	51.04 ± 0.65
MatchingNet	CNN-4	55.31 ± 0.73
ProtoNet	CNN-4	68.20 ± 0.66
MAML	CNN-4	63.15 ± 0.91
RelationNet	CNN-4	65.32 ± 0.70
Static NSN (ours)	CNN-4	65.74 ± 0.68
Meta-learned static NSN (ours)	CNN-4	66.21 ± 0.69
Dynamic NSN (ours)	CNN-4	$\textbf{71.26} \pm \textbf{0.65}$
Discriminative k-shot	ResNet-34	73.90 ± 0.30
Tadam	ResNet-12	76.7 ± 0.3
LEO	ResNet-28	$\textbf{77.59} \pm \textbf{0.12}$
Dynamic NSN (ours)	CNN-9	77.44 ± 0.63

Few-shot classification on Mini-ImageNet test set

- Meta-learned static NSN is to meta-learn the neural similarity matrix *M* during training.
- NSL generally has <u>better generalization power</u> on few-shot learning.
- Dynamic NSL performs the best and also outperforms the variant where *M* is meta-learned instead of being learned by a neural network.